The purpose of this research was to characterize by X-ray crystallography the ternary dimethylformamide (DMF) Cu(II) complex of acetylsalicylic acid (aspirin), in an effort to compare the structure-activity relationships for the anticonvulsant activity of this and other Cu(II)aspirinate chelates. The ternary DMF Cu(II) complex of aspirin was synthesized and crystals grown from a DMF solution were characterized by single crystal X-ray diffraction. This crystalline material was analyzed for anticonvulsant activity in the Maximal Electroshock (MES) Grand Mal and subcutaneous Metrazol (scMET) Petit Mal models of seizure used to detect anticonvulsant activity. The ternary DMF complex was found to be a monomolecular binuclear complex, tetrakis-mu-(acetylsalicylato)bis(dimethylformamido)dicopper(II) [Cu(II)(2)(aspirinate)(4)(DMF)(2)] with the following parameters: monoclinic, space group P2(1)/n, a=12.259 (1), b=10.228 (1), c=16.987 (1) A, beta=92.07 (1) degrees; V=2128.5 (3) A(3); Z=2. The structure was determined at 180 K from 2903 unique reflections (I>1sigma(I)) to the final values of R=0.030 and wR=0.033 using F. This binuclear complex contains four acetylsalicylate bridging ligands which are related to each other in a two by two symmetry center. The four nearest O atoms around each Cu atom form a closely square planar arrangement with the square pyramidal coordination completed by the dimethylformamide oxygen atom occupying an apical position at a distance of 2.154 (1) A. Each Cu atom is displaced towards the DMF ligand by 0.187 A from the plane of the four O atoms. Electron paramagnetic resonance (EPR) spectra of [Cu(II)(2)(aspirinate)(4)(DMF)(2)] crystals show a strong antiferromagnetic coupling of the copper atoms, similar to that observed with other binuclear copper(II)salicylate compounds. Studies used to detect anticonvulsant activity revealed that [Cu(II)(2)(aspirinate)(4)(DMF)(2)] was an effective anticonvulsant in the MES model of seizure but ineffective against scMET-induced seizures. The monomolecular ternary binuclear [Cu(II)(2)(aspirinate)(4)(DMF)(2)] complex is more effective in inhibiting MES-induced seizures than other binuclear or mononuclear Cu(II) chelates of aspirin including: binuclear polymeric [Cu(II)(2)(aspirinate)(4)], [Cu(II)(2)(aspirinate)(4)(H(2)O)], which is anticipated to be less polymeric, and monomolecular ternary [Cu(II)(2)(aspirinate)(4)(DMSO)(2)] and [Cu(II)(aspirinate)(2)(Pyr)(2)]. These and other chelates appear to be more effective in the scMET model of seizure than [Cu(II)(2)(aspirinate)(4)(DMF)(2)]. These structure-activity relationships support the potential efficacy of Cu chelates of aspirin in treating epilepsies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0162-0134(03)00153-3 | DOI Listing |
Pharmacol Rep
January 2025
Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.
View Article and Find Full Text PDFViruses
January 2025
Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.
Lassa fever (LF), a viral hemorrhagic fever disease with a case fatality rate that can be over 20% among hospitalized LF patients, is endemic to many West African countries. Currently, no vaccines or therapies are specifically licensed to prevent or treat LF, hence the significance of developing therapeutics against the mammarenavirus Lassa virus (LASV), the causative agent of LF. We used in silico docking approaches to investigate the binding affinities of 2015 existing drugs to LASV proteins known to play critical roles in the formation and activity of the virus ribonucleoprotein complex (vRNP) responsible for directing replication and transcription of the viral genome.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems.
View Article and Find Full Text PDFMolecules
January 2025
Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru.
Epilepsy is a chronic neurological disorder that affects nearly 50 million people worldwide. Experimental evidence suggests that epileptic neurons are linked to the endocannabinoid system and that inhibition of the FAAH enzyme could have neuroprotective effects by increasing the levels of endogenous endocannabinoid anandamide. In this context, the use of macamides as therapeutic agents in neurological diseases has increased in recent years.
View Article and Find Full Text PDFChin J Nat Med
January 2025
Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China. Electronic address:
Pinelliae Rhizoma (PR), known as Banxia in Chinese, Hange in Japanese, and Banha in Korean, is a renowned herbal medicine in East Asia derived from the dry tuber of Pinellia ternata (Thunb.) Breit. (PT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!