Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions.

J Inorg Biochem

Walther-Straub-Institut für Pharmakologie und Toxikologie, Nussbaumstrasse 26, D-80336, Munich, Germany.

Published: August 2003

The problem of donor-acceptor recognition has been the most important and intriguing one in the area of P450 research. The present review outlines the topological background of electron-transfer complex formation, showing that the progress in collaborative investigations, combining physical techniques with chemical-modification and immunolocalization studies as well as site-directed mutagenesis experiments, has increasingly enabled the substantiation of hypothetical work resulting from homology modelling of P450s. Circumstantial analysis reveals the contact regions for redox proteins to cluster on the proximal face of P450s, constituting parts of the highly conserved, heme-binding core fold. However, more variable structural components located in the periphery of the hemoprotein molecules also participate in donor docking. The cross-reactivity of electron carriers, purified from pro- and eukaryotic sources, with a diversity of P450 species points at a possible evolutionary conservation of common anchoring domains. While electrostatic mechanisms appear to dominate orientation toward each other of the redox partners to generate pre-collisional encounter complexes, hydrophobic forces are likely to foster electron transfer events by through-bonding or pi-stacking interactions. Moreover, electron-tunneling pathways seem to be operative as well. The availability of new P450 crystal structures together with improved validation strategies will undoubtedly permit the production of increasingly satisfactory three-dimensional donor-acceptor models serving to better understand the molecular principles governing functional association of the redox proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0162-0134(03)00152-1DOI Listing

Publication Analysis

Top Keywords

redox partners
8
contact regions
8
redox proteins
8
functional interaction
4
interaction cytochrome
4
p450
4
cytochrome p450
4
redox
4
p450 redox
4
partners critical
4

Similar Publications

Tambjamines are complex bipyrrole-containing natural products that possess promising bioactive properties. Although is known to produce both cyclic tambjamine MYP1 and the linear precursor (YP1), the biosynthetic machinery used to catalyze the site-selective oxidative carbocyclization at the unactivated 1° carbon of YP1 has remained unclear. Here, we demonstrate that a three-component Rieske system consisting of an oxygenase (TamC) and two redox partner proteins is responsible for this unprecedented activity on YP1 and potentially, a non-native substrate (BE-18591).

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis.

View Article and Find Full Text PDF

Metabolic dependency mapping identifies Peroxiredoxin 1 as a driver of resistance to ATM inhibition.

Redox Biol

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA. Electronic address:

Metabolic pathways fuel tumor progression and resistance to stress conditions including chemotherapeutic drugs, such as DNA damage response (DDR) inhibitors. Yet, significant gaps persist in how metabolic pathways confer resistance to DDR inhibition in cancer cells. Here, we employed a metabolism-focused CRISPR knockout screen and identified genetic vulnerabilities to DDR inhibitors.

View Article and Find Full Text PDF

Biosynthesis of 10-Hydroxy-2-Decenoic Acid in Escherichia coli.

Metab Eng

January 2025

Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China. Electronic address:

10-hydroxy-2-decenoic acid (10-HDA), a unique unsaturated fatty acid present in royal jelly, has attracted considerable interest due to its potential medical applications. However, its low concentration in royal jelly and complex conformational structure present challenges for large-scale production. In this study, we designed and constructed a de novo biosynthetic pathway for 10-HDA in Escherichia coli.

View Article and Find Full Text PDF

Engineering Planar Crystallinity in Nitrogen-Vacancy-Incorporated Carbon Nitride for Efficient Photoredox Catalysis.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.

The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!