Long-term depression (LTD) of monosynaptic and polysynaptic excitatory postsynaptic potentials (EPSPs) in substantia gelatinosa (SG) neurons can be induced by brief high-frequency electrical stimulation (HFS, 300 pulses at 100 Hz) of primary afferent fibers in dorsal roots. Here we examined the possible cellular mechanism underlying spinal LTD. Conventional intracellular recordings were made from SG neurons in a transverse slice-dorsal root preparation of the young rat lumbar spinal cord. LTD of both monosynaptic and polysynaptic EPSPs was induced in 16 of 24 SG neurons by HFS of dorsal root in either the presence or absence of the GABA(A) receptor antagonist bicuculline and the glycine receptor antagonist strychnine. Loading the postsynaptic cell with BAPTA, an intracellular Ca(2+) chelator, almost completely blocked the induction of LTD. Induction of LTD was abolished by bath application of calyculin A (100 nM), a potent inhibitor of protein phosphatases 1 and 2A. These results indicate that: (i) a rise in postsynaptic Ca(2+) is necessary for LTD induction, (ii) synaptic activation of protein phosphatases 1 and 2A plays an important role in the induction of LTD of primary afferent A-fiber neurotransmission in the young rat spinal cord, and (iii) the effect of LTD may be physiologically relevant for transmission and integration of sensory information, including nociception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-3806(03)00161-5 | DOI Listing |
Sci Adv
January 2025
Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.
View Article and Find Full Text PDFCommun Biol
January 2025
Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China.
Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115.
The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States of America.
Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
Protein phosphatases are critical for regulating cell signaling, cell cycle, and cell fate decisions, and their dysregulation leads to an array of human diseases like cancer. The dual specificity phosphatases (DUSPs) have emerged as important factors driving tumorigenesis and cancer therapy resistance. DUSP12 is a poorly characterized atypical DUSP widely conserved throughout evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!