Neuroanatomical development in the absence of PKC phosphorylation of the myristoylated alanine-rich C-kinase substrate (MARCKS) protein.

Brain Res Dev Brain Res

Office of Clinical Research and Laboratory of Signal Transduction, A2-05 National Institute of Environmental Health Sciences, 111 Alexander Drive, Research Triangle Park, NC 27709, USA.

Published: August 2003

The myristoylated alanine-rich C-kinase substrate protein (MARCKS) is a widely expressed target of protein kinase C (PKC) phosphorylation. Disruption of Marcks in mice leads to a number of developmental defects within the central nervous system that are completely prevented by expression of an epitope-tagged wild-type human MARCKS transgene. In the present study, we investigated whether PKC phosphorylation of MARCKS is necessary for normal central nervous system development and postnatal survival. Expression at approximately twice normal levels of a mutant MARCKS protein in which the four PKC phosphorylatable serines were replaced by asparagines did not allow postnatal survival of Marcks(-/-) pups. Nonetheless, the rescued animals exhibited none of the characteristic anatomical defects seen in the brains and retinas of knockout mice, suggesting that PKC phosphorylation of MARCKS is not required for normal central nervous system development. Expression studies showed that transgene expression was limited to the central nervous system, which has implications for the lack of postnatal survival as well as for the pathogenesis of the neuronal ectopia characteristic of MARCKS deficiency. A novel aspect of the MARCKS-deficient phenotype was also noted, absence of the pontine nuclei; this was also largely reversed in Marcks(-/-) animals expressing the mutant transgene. These data raise the possibility of a role for MARCKS in the netrin-regulated process of pontine nuclei formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-3806(03)00155-xDOI Listing

Publication Analysis

Top Keywords

pkc phosphorylation
16
central nervous
16
nervous system
16
postnatal survival
12
marcks
9
myristoylated alanine-rich
8
alanine-rich c-kinase
8
c-kinase substrate
8
marcks protein
8
phosphorylation marcks
8

Similar Publications

Increased phosphorylation of AMPKα1 S485 in colorectal cancer and identification of PKCα as a responsible kinase.

Cancer Lett

December 2024

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:

Article Synopsis
  • The study investigates how phosphorylation of AMPKα1 at S485 affects colon cancer cells and identifies PKCα as the responsible kinase.
  • The results indicate that S485 phosphorylation is higher in colorectal cancer tissues compared to normal ones and is linked to increased cell growth and migration.
  • The research highlights that PKCα plays a key role in this phosphorylation, as its inhibition reduces S485 phosphorylation and impacts cancer cell behaviors under various nutritional conditions.
View Article and Find Full Text PDF

Rap1 and mTOR signaling pathways drive opposing immunotoxic effects of structurally similar aryl-OPFRs, TPHP and TOCP.

Environ Int

December 2024

Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China.

Aryl organophosphorus flame retardants (aryl-OPFRs), commonly used product additives with close ties to daily life, have been regrettably characterized by multiple well-defined toxicity risks. Triphenyl phosphate (TPHP) and tri-o-cresyl phosphate (TOCP), two structurally similar aryl-OPFRs, were observed in our previous study to exhibit contrasting immunotoxic effects on THP-1 macrophages, yet the underlying mechanisms remain unclear. This study sought to address the knowledge gap by integrating transcriptomic and metabolomic analyses to elucidate the intricate mechanisms.

View Article and Find Full Text PDF

Myriscagayanone C, a new compound from the fruit of myristica cagayanensis, inhibits fMLP-induced respiratory bursts by specifically preventing Akt translocation in human neutrophils.

Chem Biol Interact

December 2024

Department of Pharmacy, School of Pharmaceutical, National Yang Ming Chiao Tuang University, Taipei, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan. Electronic address:

Neutrophils that are overactivated can cause inflammatory diseases. Neutrophils possess various surface receptors, including G-protein-coupled chemoattractant receptors, which assist in recognizing pathogen attacks and the inflammatory environment. Therefore, targeting G-protein-coupled chemoattractant receptors and their downstream molecules is important for preventing abnormal neutrophil activation.

View Article and Find Full Text PDF

Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice.

Int J Mol Sci

November 2024

Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.

Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768.

View Article and Find Full Text PDF

PKC phospho-activated PFK1 is required for PBAN regulated sex pheromone biosynthesis in Helicoverpa armigera.

J Insect Physiol

December 2024

State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China. Electronic address:

The enzyme 6-phosphofructokinase-1 (PFK1) acts as the primary rate-limiting enzyme in glycolysis, catalyzing the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. This glycolytic process provides essential substrates for the synthesis of sex pheromones. However, the specific function of PFK1 in sex pheromone biosynthesis remains unidentified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!