AI Article Synopsis

Article Abstract

Cellular signaling proteins such as metabotropic glutamate receptors, Shank, and different types of ion channels are physically linked by Vesl (VASP/Ena-related gene up-regulated during seizure and LTP)/Homer proteins [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23 (2000) 80; J. Cell Sci. 113 (2000) 1851]. Vesl/Homer proteins have also been implicated in differentiation and physiological adaptation processes [Nat. Neurosci. 4 (2001) 499; Nature 411 (2001) 962; Biochem. Biophys. Res. Commun. 279 (2000) 348]. Here we provide evidence that a Vesl/Homer subtype, Vesl-1L/Homer-1c (V-1L), reduces the function of the intracellular calcium channel ryanodine receptor type 2 (RyR2). In contrast, Vesl-1S/Homer-1a (V-1S) had no effect on RyR2 function but reversed the effects of V-1L. In live cells, in calcium release studies and in single-channel electrophysiological recordings of RyR2, V-1L reduced RyR2 activity. Important physiological functions and pharmacological properties of RyR2 are preserved in the presence of V-1L. Our findings demonstrate that a protein-protein interaction between V-1L and RyR2 is not only necessary for organizing the structure of intracellular calcium signaling proteins [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23(2000)80; J. Cell Sci. 113 (2000) 1851; Nat Neurosci. 4 (2001) 499; Nature 411 (2001) 962; Biochem. Biophys. Res. Commun. 279 (2000) 348; Nature 386 (1997) 284], but that V-1L also directly regulates RyR2 channel activity by changing its biophysical properties. Thereby it may control cellular calcium homeostasis. These observations suggest a novel mechanism for the regulation of RyR2 and calcium-dependent cellular functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0143-4160(03)00112-xDOI Listing

Publication Analysis

Top Keywords

intracellular calcium
12
vesl/homer proteins
8
ryanodine receptor
8
receptor type
8
function intracellular
8
calcium signaling
8
signaling proteins
8
proteins [curr
8
[curr opin
8
opin neurobiol
8

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!