We have shown previously that in ruin lizards (Podarcis sicula) the ablation of all known photoreceptive structures (lateral eyes, pineal and parietal eye) in the same individual animal does not prevent entrainment of their circadian locomotor rhythms to light. The present study was aimed at identifying the circadian brain photoreceptors mediating entrainment. For this purpose, we looked for opsin expression in the brain by means of immunocytochemistry. Using anti-cone-opsin antiserum CERN 874 we have localized photoreceptors in the periventricular area of hypothalamus, near the third cerebral ventricle. We also cloned a brain opsin cDNA that, on the basis of the deduced amino acid sequence, appears to belong to the RH2 class of cone-opsins. We named the cloned cone-opsin Ps-RH2. To examine whether brain cone-opsins mediate photic entrainment of circadian locomotor rhythms, we performed post-transcriptional inactivation experiments by injecting an expression eukaryotic vector transcribing the antisense cone-opsin Ps-RH2 mRNA in the third cerebral ventricle of pinealectomized-retinectomized lizards previously entrained to a light-dark (LD) cycle. Injections of the antisense construct abolished photic entrainment of circadian locomotor rhythms of pinealectomized-retinectomized lizards to the LD cycle for 6-9 days. CERN 874 completely failed to label cells within the periventricular area of hypothalamus of brains injected with antisense construct. Thus, abolishment of photic entrainment is due to inactivation of endogenous brain cone-opsins mRNA. The present results demonstrate for the first time in a vertebrate that brain cone-opsins are part of a true circadian brain photoreceptor participating in photic entrainment of behavioural rhythms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1460-9568.2003.02770.x | DOI Listing |
Sleep Med
December 2024
Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France.
This review attempts to analyze the relationship between the vestibular system and the circadian timing system. The activity of the biological clock allows an organism to optimally perform its tasks throughout the nychtemeron. To achieve this, the biological clock is subjected to exogenous factors that entrain it to a 24h period.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland. Electronic address:
The visual system is a sensory system which is sensitive to light and detects photic stimuli. It plays many important functions, such as vision, circadian clock entrainment and regulation of sleep-wake behavior. The interconnection between the visual system and clock network is precisely regulated.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Pl., Building 324, 2800, Kgs. Lyngby, Denmark.
Vision Res
January 2025
MRC Cognition and Brain Sciences Unit, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK; Department of Speech, Hearing & Phonetic Sciences, University College London, London, UK. Electronic address:
Behav Brain Funct
November 2024
Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!