Infectious HIV-1 assembles in late endosomes in primary macrophages.

J Cell Biol

Cell Biology Unit, Medical Research (MRC) Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.

Published: August 2003

Although human immunodeficiency virus type 1 (HIV-1) is generally thought to assemble at the plasma membrane of infected cells, virions have been observed in intracellular compartments in macrophages. Here, we investigated virus assembly in HIV-1-infected primary human monocyte-derived macrophages (MDM). Electron microscopy of cryosections showed virus particles, identified by their morphology and positive labeling with antibodies to the viral p17, p24, and envelope proteins, in intracellular vacuoles. Immunolabeling demonstrated that these compartments contained the late endosomal marker CD63, which was enriched on vesicles within these structures and incorporated into the envelope of budding virions. The virus-containing vacuoles were also labeled with antibodies against LAMP-1, CD81, and CD82, which were also incorporated into the viral envelope. To assess the cellular source of infectious viruses derived from MDM, virus-containing media from infected cells were precipitated with specific antibodies. Only antibodies against antigens found in late endosomes precipitated infectious virus, whereas antibodies against proteins located primarily on the cell surface did not. Our data indicate that most of the infectious HIV produced by primary macrophages is assembled on late endocytic membranes and acquires antigens characteristic of this compartment. This notion has significant implications for understanding the biology of HIV and its cell-cell transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172706PMC
http://dx.doi.org/10.1083/jcb.200304008DOI Listing

Publication Analysis

Top Keywords

late endosomes
8
primary macrophages
8
infected cells
8
antibodies
5
infectious
4
infectious hiv-1
4
hiv-1 assembles
4
late
4
assembles late
4
endosomes primary
4

Similar Publications

Background: Nearly all people with Down Syndrome (DS) develop Alzheimer's dementia (AD) by the 7 decade of life. However, whether the alterations in fluid biomarker levels associated with DS follow the same pattern to those observed in other forms of AD is not well understood.

Method: We used mass spectrometry-based proteomics to measure 1116 proteins in cerebrospinal fluid (CSF) across euploid controls (n=130), sporadic late-onset AD (LOAD, n=89), asymptomatic DS (n=117), prodromal DS (n=57), and dementia DS (n=80) cases, and compared the protein changes observed in DS to those in LOAD and to those recently described in autosomal dominant AD (ADAD).

View Article and Find Full Text PDF

Von Willebrand factor (VWF) plays a critical role in hemostasis, and emerging evidence suggests its involvement in inflammation. Our study aimed to investigate the interaction between circulating plasma VWF and neutrophils (polymorphonuclear cells, PMNs), elucidate the fate of VWF after binding, and explore its impact on neutrophil behavior. Neutrophils were isolated from the whole blood of healthy volunteers, and their interaction with plasma VWF was examined ex vivo.

View Article and Find Full Text PDF

PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis.

Biochem Biophys Res Commun

December 2024

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China. Electronic address:

Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyve) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyvezebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation.

View Article and Find Full Text PDF

Endosomal recycling is a branch of intracellular membrane trafficking that retrieves endocytosed cargo proteins from early and late endosomes to prevent their degradation in lysosomes. A key player in endosomal recycling is the Commander complex, a 16-subunit protein assembly that cooperates with other endosomal factors to recruit cargo proteins and facilitate the formation of tubulo-vesicular carriers. While the crucial role of Commander in endosomal recycling is well established, its molecular mechanism remains poorly understood.

View Article and Find Full Text PDF

Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!