The basolateral amygdala and the ventral subiculum of the hippocampal formation are two of the major limbic-related regions within the brain, both of which project heavily to the nucleus accumbens. The nucleus accumbens is regarded as the limbic-motor interface, in view of these limbic afferent and its somatomotor and autonomic efferent connections. These afferent inputs have been suggested to converge monosynaptically on cells within the accumbens and are hypothesised to play a role in functions such as affective motivational behaviour. Convergence between inputs from the basolateral amygdala and the hippocampus at the level of the accumbens can be demonstrated with electrophysiological recording methods, but these do not conclusively preclude polysynaptic mechanisms. In fact there is a robust reciprocal projection between the basolateral amygdala and the hippocampus, synaptic details of which have not been fully investigated. We examined the synaptic input from the basolateral amygdala to the projection neurons of the subiculum, the spiny pyramidal neurons. We labelled the afferents from basolateral amygdala with a small injection of biotinylated dextran amine, and revealed the anterogradely labeled fibers within the subiculum. The labeled basolateral amygdala fibers were studied with electron microscopy to identify their postsynaptic target structures. With this technique we have demonstrated anatomically that the basolateral amygdala preferentially innervates spiny subiculum neurons, presumed pyramidal projection neurons, although some dendrites and possibly local circuit neurons may be targeted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(03)03017-8 | DOI Listing |
Neuron
January 2025
Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA. Electronic address:
Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance.
View Article and Find Full Text PDFDev Psychobiol
January 2025
Department of Psychology, The University of Tennessee Knoxville, Knoxville, Tennessee, USA.
Long-term effects of social play on neural and behavioral development remain unclear. We investigated whether just 1 h of juvenile social play could rescue the effects of play deprivation on stress-related behavior and markers of neural plasticity. Syrian hamsters were reared from postnatal days 21-43 in three conditions: peer isolation, peer isolation with daily social play sessions (dyadic play), or group-housed with littermates.
View Article and Find Full Text PDFUnlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.
View Article and Find Full Text PDFPhysiol Behav
January 2025
Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China. Electronic address:
Many animal studies have explored decision-making under risk and punishment, particularly regarding potential rewards, but less focus has been placed on contexts involving net losses. Understanding decision-making under net loss conditions can shed light on the neural mechanisms involved. The basolateral amygdala to prelimbic cortex (BLA→PL) pathway is crucial for risky decision-making.
View Article and Find Full Text PDFGeorgian Med News
November 2024
2Institute of Botany after A. Takhtajyan NAS RA, Yerevan, Armenia.
Parkinson disease (PD) is a common neurodegenerative condition. It affects the central nervous system, and it impairs cognitive processes, motor skills and other functions. The aim of this study was to determine the synaptic processes in medial Entorhinal cortex (mENT) under High frequency stimulation of Basolateral Amygdala on the model of Parkinson's disease under the influence of Hydrocortisone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!