The anterior pituitary is an endocrine gland that controls basic body functions. Pituitary cell functioning depends on membrane excitability, which induces cytosolic calcium rises. Here, we reported the first identification of small-amplitude voltage fluctuations that controlled spike firing in endocrine cells recorded in situ. Three patterns of voltage fluctuations were distinguishable by their durations (1-100 s). These patterns could be ordered on top of each other, namely in response to secretagogues. Thus, pituitary endocrine cells express in situ a cell code in which small-amplitude voltage fluctuations lead to a multimodal arrangement of spike firing, which may finely tune calcium-dependent functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(03)00727-0DOI Listing

Publication Analysis

Top Keywords

voltage fluctuations
12
pituitary endocrine
8
small-amplitude voltage
8
spike firing
8
endocrine cells
8
electrical activity
4
endocrine
4
activity endocrine
4
pituitary
4
endocrine pituitary
4

Similar Publications

This paper introduces an innovative, adaptive Fractional Open-Circuit Voltage (FOCV) algorithm combined with a robust Improved Model Reference Adaptive Controller (IMRAC) for Maximum Power Point Tracking (MPPT) in standalone photovoltaic (PV) systems. The proposed two-stage control strategy enhances energy efficiency, simplifies system operation, and addresses limitations in conventional MPPT methods, such as slow convergence, high oscillations, and susceptibility to environmental fluctuations. The first stage dynamically estimates the Maximum Power Point (MPP) voltage using a novel adaptive FOCV method, which eliminates the need for irradiance sensors or physical disconnection of PV modules.

View Article and Find Full Text PDF

Electric vehicles are increasingly popular for their environmental benefits and cost savings, but the reliability and safety of their lithium-ion batteries are critical concerns. Current regression methods for battery fault detection often analyze charging and discharging as a single continuous process, missing important phase differences. This paper proposes segmented regression to better capture these distinct characteristics for accurate fault detection.

View Article and Find Full Text PDF

To address the challenges related to active power dissipation and node voltage fluctuation in the practical transformation of power grids in the field of new energy such as wind and photovoltaic power generation, an improved Dung Beetle Optimization Algorithm Based on a Hybrid Strategy of Levy Flight and Differential Evolution (LDEDBO) is proposed. This paper systematically addresses this issue from three aspects: firstly, optimizing the DBO algorithm using Chebyshev chaotic mapping, Levy flight strategy, and differential evolution algorithm; secondly, validating the algorithm's feasibility through real-time network reconfiguration at random time points within a 24-h period; and finally, applying the LDEDBO to address the dynamic reconfiguration problems of the IEEE-33 and IEEE-69 node bus. The simulation indicates that the power dissipation of the IEEE-33 node bus is decreased by 28.

View Article and Find Full Text PDF

Advanced control strategy for AC microgrids: a hybrid ANN-based adaptive PI controller with droop control and virtual impedance technique.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, an improved voltage control strategy for microgrids (MG) is proposed, using an artificial neural network (ANN)-based adaptive proportional-integral (PI) controller combined with droop control and virtual impedance techniques (VIT). The control strategy is developed to improve voltage control, power sharing and total harmonic distortion (THD) reduction in the MG systems with renewable and distributed generation (DG) sources. The VIT is used to decouple active and reactive power, reduce negative power interactions between DG's and improve the robustness of the system under varying load and generation conditions.

View Article and Find Full Text PDF

Introduction: Atrial pacing maps are often used as substitutes for sinus rhythm (SR) maps to expedite mapping procedures. However, the impact of this method on electrophysiological parameters has not been systematically examined. This study aimed to elucidate the advantages and limitations of atrial pacing maps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!