Gliclazide is practically insoluble in water, and has low dissolution rate. Therefore, it was of interest to improve its dissolution rate using anionic and cationic surfactants. The intrinsic dissolution rates of gliclazide in solutions of sodium dodecyl sulfate (SDS) and in solutions of tetradecyltrimethyl ammonium bromide (TDTMAB) were measured using the rotating disk method to study the convective diffusion transport of drug-loaded micelles. Two different approaches were applied to the experimental data; the convective diffusion model and the film equilibrium model. The two approaches are based on the same fundamental assumptions differing only in their interpretation of the diffusional boundary layer. The results obtained from the film equilibrium model were less satisfactory, and in case of TDTMAB the model was inapplicable (negative diffusion coefficient). While excellent results were obtained from the convective diffusion model. The free solute diffusion coefficient (D(s)) obtained experimentally was 2.47 x 10(-5) cm(2)/s, and the diffusion coefficient of the drug-loaded SDS micelle (D(sm)) estimated was 1.74 x 10(-6) cm(2)/s. The drug-loaded SDS micelle radius was 14 A. The thickness of the diffusional boundary layer was 54 and 22 microm for the free solute and the drug-loaded SDS micelle, respectively. TDTMAB showed lower effect in improving the dissolution rate of gliclazide than SDS. The drug-loaded TDTMAB micelle diffusion coefficient was 1.03 x 10(-6) cm(2)/s. The radius of the drug-loaded TDTMAB micelle and the boundary layer thickness were 24 A and 19 microm, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0928-0987(03)00107-6DOI Listing

Publication Analysis

Top Keywords

convective diffusion
16
diffusion coefficient
16
diffusion model
12
film equilibrium
12
equilibrium model
12
dissolution rate
12
boundary layer
12
drug-loaded sds
12
sds micelle
12
diffusion
8

Similar Publications

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Phosphorus (P) movement in soils is influenced by flow velocities, diffusion rates, and several soil characteristics and properties. In acidic soils, P is tightly bound to soil particles, reducing its availability to plants. Organomineral fertilizers combine organic matter with mineral nutrients, enhancing P fertilization efficiency, and reducing environmental impacts.

View Article and Find Full Text PDF

Surface plasmon resonance (SPR) is normally used to measure the kinetic parameters of biomolecular interactions between a molecule immobilized on a gold surface and another one flowing in a microfluidic channel above the surface. During the SPR measurements, convection-diffusion phenomena occur inside the microfluidic channels, but they are generally minimized by appropriate experimental setup in order to obtain diffusion free kinetic parameters of the molecular interactions. In this work, for the first time, a commercial SPR apparatus has been used to obtain non canonical scientific parameters.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is regarded as a green and sustainable strategy to address the global freshwater crisis. Nevertheless, it remains challenging to develop a photothermal structure with highly efficient evaporation under omnidirectional illumination. Herein, a three-dimensional multiscale pyramidal array photothermal structure (PAPS) was developed from the inspiration of durian skin.

View Article and Find Full Text PDF

CRRT Is More Than Just Continuous Renal Replacement Therapy.

Pharmaceuticals (Basel)

November 2024

Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary.

The physiology of the kidney has long been understood, and its mechanisms are well described. The pathology of renal failure is also a deeply researched area. It seems logical, therefore, to create devices that can replace the lost normal function of the kidney.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!