Because radiation remains a common postoperative treatment for head and neck cancers, it is critical to determine whether new bone-regenerative approaches are effective for healing craniofacial defects challenged by therapeutic doses of radiation. The objective of this study was to determine whether the deleterious effects of radiotherapy could be overcome by ex vivo gene therapy to heal craniofacial defects. Rat calvarial critical-sized defects were treated with either an inlay calvarial bone graft or syngeneic dermal fibroblasts transduced ex vivo with an adenovirus engineered to express bone morphogenetic protein 7 (BMP-7), a morphogen known to stimulate bone formation. Two weeks postoperatively, either no radiation or a single 12-Gy radiation dose was delivered to the operated area and the tissue was harvested 4 weeks later. None of the inlay bone grafts healed at the wound margins of either the radiated or nonradiated sites. In contrast, bone was successfully regenerated when using an ex vivo gene therapy approach. More bone formed in the nonradiated group as determined by the percentage of defect surface covered (87 +/- 4.1 versus 65 +/- 4.7%; p = 0.003) and percentage of defect area filled by new bone (60 +/- 5.9 versus 32 +/- 2.7%; p = 0.002). Although the effects of radiation on the wound were not completely overcome by the gene therapy approach, bone regeneration was still successful despite the radiation sensitivity of the fibroblasts. These results indicate that BMP-7 ex vivo gene therapy is capable of successfully regenerating bone in rat calvarial defects even after a therapeutic dose of radiation. This approach may represent a new strategy for regenerating skeletal elements lost due to head and neck cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1089/104303403322124819DOI Listing

Publication Analysis

Top Keywords

gene therapy
20
vivo gene
16
bone
9
head neck
8
craniofacial defects
8
rat calvarial
8
therapy approach
8
approach bone
8
percentage defect
8
+/- versus
8

Similar Publications

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL.

View Article and Find Full Text PDF

Unlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Acute myeloid leukemias (AMLs) have an overall poor prognosis with many high-risk cases co-opting stem cell gene regulatory programs, yet the mechanisms through which this occurs remain poorly understood. Increased expression of the stem cell transcription factor, MECOM, underlies one key driver mechanism in largely incurable AMLs. How MECOM results in such aggressive AML phenotypes remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!