Aberro-polariscope for the human eye.

Opt Lett

Laboratorio de Optica, Departamento de Física, Universidad de Murcia, Campus de Espinardo (Edificio C), 30071 Murcia, Spain.

Published: July 2003

We have developed an aberro-polariscope that simultaneously measures spatially resolved polarization properties and wave-front aberration in a living human eye. The setup consists of an infrared Hartmann-Shack sensor that incorporates a polariscope. A series of four Hartmann-Shack images corresponding to independent polarization states were recorded. The corresponding wave-front aberration was computed from each image. Moreover, from each set of four images spatially resolved (over the pupil plane) parameters of polarization were also determined. This instrument allows useful information on both the optical and the biomechanical properties of the eye to be obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.28.001209DOI Listing

Publication Analysis

Top Keywords

human eye
8
spatially resolved
8
wave-front aberration
8
aberro-polariscope human
4
eye developed
4
developed aberro-polariscope
4
aberro-polariscope simultaneously
4
simultaneously measures
4
measures spatially
4
resolved polarization
4

Similar Publications

Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.

Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.

View Article and Find Full Text PDF

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.

View Article and Find Full Text PDF

Clinical Characteristics and In Vivo Confocal Microscopic Study in Candida Keratitis.

Transl Vis Sci Technol

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Purpose: To clarify the clinical and imaging characteristics of Candida keratitis using in vivo confocal microscopy (IVCM) for improved early diagnosis and management.

Methods: A retrospective study of 40 patients with Candida keratitis at Beijing Tongren Hospital from January 2015 to December 2023 was conducted. Data included demographics, risk factors, clinical assessments, lab tests, and IVCM images.

View Article and Find Full Text PDF

Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!