The importance of structure form factors in describing elastic scattering in diagnostic radiology was studied through a Monte Carlo code built to reproduce scattering in large water samples. The code, developed by us, considers all relevant interactions, including multiple scattering and interference due to scattering by the liquid structure. Geometrical conditions and energies similar to those found in radiology were used. The secondary to primary radiation ratio using the usual free atom approximation and the structure form factor was obtained and both approaches were compared. Calculations of radiological parameters such as the angular distribution of photons incident on the detector and the fraction of scattered photons stopped by anti-scattering grids were also performed considering mammography, thorax and abdomen radiography conditions. The results have shown that S(beta)/P depends on the experimental set-up, being more important for low momentum transfers and sample sizes for which the multiple scattering is not expected to be significant, as in the case of mammography. It was also verified that large samples increase the probability of multiple scattering, masking the structure peak in S(beta) and making the sample structure important just for relatively thin samples. Considering mammography-like geometry, the maximum of the S(beta)/P distribution considering structure form factors occurs around 15 degrees while the correspondent maximum without considering the structure factors occurs around 10 degrees for any sample thickness. S(beta)/P is almost independent of the irradiation field, with the maximum remaining at 15 degrees and 10 degrees for the SFF and FAFF, respectively. The cases studied in this paper stress some conditions in which it is mandatory to use SFF, but since it requires no further significant efforts, the SFF approach is recommended as a standard procedure when describing the elastic scattering process in radiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/48/13/304 | DOI Listing |
Genet Med
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:
Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.
View Article and Find Full Text PDFSci Rep
December 2024
Nuclear Engineering Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
This study proposes a novel, highly sensitive neutron detector design utilizing a unique multi-layered configuration. Each layer consists of a LiF: ZnS(Ag) scintillator coupled with a transparent neutron moderator that also functions as a light guide for the Silicon Photomultiplier (SiPM) light sensor. This design offers a cost-effective and readily available alternative for existing neutron detectors.
View Article and Find Full Text PDFSci Rep
December 2024
Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea.
Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.
View Article and Find Full Text PDFSci Rep
December 2024
College of Geography and Environment, Shandong Normal University, Jinan, 250358, China.
The urban agglomeration represents the predominant form of new urbanisation, yet the evolution of its internal spatial structure exhibits pronounced spatial and temporal heterogeneity. This study concentrates on the Bohai Rim urban agglomeration, one of three major urban agglomerations in China, which has received comparatively limited research attention but has also undergone substantial urbanisation. Therefore, we reassessed and explored the spatial-temporal evolution of the spatial structure of urban expansion using Exploratory Spatiotemporal Data Analysis (ESTDA), and summarized the driving mechanisms using Geographically and Temporally Weighted Regression (GTWR).
View Article and Find Full Text PDFBMC Genomics
December 2024
College of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!