Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nuclear magnetic resonance spectroscopy has been used to characterize the versatile peroxidase from Pleurotus eryngii, both in the resting state and in the cyanide-inhibited form. The assignment of most of the hyperfine-shifted resonances has been achieved by two-dimensional NMR, allowing the comparison of the present system with other ligninolytic peroxidases. This information has enabled a detailed analysis of the interaction of the enzyme with one of its reducing substrates, Mn(II). Furthermore, comparison with the data collected on a mutant in the putative Mn(II) binding site, and an analysis of the enzyme kinetic properties, shed light on the factors affecting the function of this novel peroxidase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00775-003-0476-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!