Voltage-gated potassium channels are transmembrane proteins made up of four subunits, each comprising six transmembrane (S1-S6) segments. S1-S4 form the voltage-sensing domain and S5-S6 the pore domain with its central pore. The sensor domain detects membrane depolarization and transmits the signal to the activation gates situated in the pore domain, thereby leading to channel opening. An understanding of the mechanism by which the sensor communicates the signal to the pore requires knowledge of the structure of the interface between the voltage-sensing and pore domains. Toward this end, we have introduced single cysteine mutations into the extracellular end of S4 (positions 356 and 357) in conjunction with a cysteine in S5 (position 418) of the Shaker channel and expressed the mutants in Xenopus oocytes. We then examined the propensity of each pair of engineered cysteines to form a metal bridge or a disulfide bridge, respectively, by examining the effect of Cd2+ ions and copper phenanthroline on the K+ conductance of a whole oocyte. Both reagents reduced currents through the S357C,E418C double mutant channel, presumably by restricting the movements necessary for coupling the voltage-sensing function to pore opening. This inhibitory effect was seen in the closed state of the channel and with heteromers composed of S357C and E418C single mutant subunits; no effect was seen with homomers of any of the single mutant channels. These data indicate that the extracellular end of S4 lies in close proximity to the extracellular end of the S5 of the neighboring subunit in closed channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M301991200/6493 | DOI Listing |
Acta Pharmacol Sin
January 2025
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant.
View Article and Find Full Text PDFThe big potassium (BK) channels remain open with a small limiting probability of ∼ 10 at minimal Ca and negative voltages < -100 mV. The molecular origin and functional significance of such "intrinsic opening" are not understood. Here we combine atomistic simulations and electrophysiological experiments to show that the intrinsic opening of BK channels is an inherent property of the vapor barrier, generated by hydrophobic dewetting of the BK inner pore in the deactivated state.
View Article and Find Full Text PDFStructure
January 2025
Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:
mRNAs are packaged with proteins into messenger ribonucleoprotein complexes (mRNPs) in the nucleus. mRNP assembly and export are of fundamental importance for all eukaryotic gene expression. Before export to the cytoplasm, mRNPs undergo dynamic remodeling governed by the DEAD-box helicase DDX39B (yeast Sub2).
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Faculty for the Built Environment, University of Malta, MSD 2080 Msida, Malta.
This paper highlights the optimisation of a key design parameter essential to the development of PMUTs, which are part of the transmitting components of microsensors. These microsensors are designed for use in the Structural Health Monitoring of reinforced concrete structures. Enhancing the effectiveness of the transmitting component allows for greater spacing between microsensors, which in turn reduces the number of devices needed to implement a full structural health monitoring system.
View Article and Find Full Text PDFMicrob Genom
January 2025
Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA.
Bacteria from the complex (Smc) are important multidrug-resistant pathogens that cause a broad range of infections. Smc is genomically diverse and has been classified into 23 lineages. Lineage Sm6 is the most common among sequenced strains, but it is unclear why this lineage has evolved to be dominant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!