Transformation efficiencies as high as 10(7) transformants microg(-1) DNA have been previously reported for pseudomonads using electroporation protocols established for E. coli with plasmid DNAs prepared from methylation proficient E. coli hosts. We report here a protocol for electroporation of plasmid DNAs into a biocontrol strain of Pseudomonas syringae which could not be electroporated by standard E. coli methods. Transformation efficiencies of 10(7) or higher were obtained with DNA recovered from initial P. syringae transformation or with DNA prepared from methylation deficient E. coli. Both plasmids used in this study were stably maintained in the absence of selection for at least 50 generations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1022394716305 | DOI Listing |
NPJ Regen Med
December 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models.
View Article and Find Full Text PDFBioorg Med Chem
November 2024
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China. Electronic address:
Mol Cell
November 2024
Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany. Electronic address:
Structural maintenance of chromosomes (SMC) complexes play pivotal roles in genome organization and maintenance across all domains of life. In prokaryotes, SMC-family Wadjet complexes structurally resemble the widespread MukBEF but serve a defensive role by inhibiting plasmid transformation. We previously showed that Wadjet specifically cleaves plasmid DNA; however, the molecular mechanism underlying plasmid recognition remains unclear.
View Article and Find Full Text PDFParasit Vectors
November 2024
Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
Background: Malaria remains a serious public health problem worldwide, particularly in Africa. Resistance to antimalarial drugs is an essential issue for malaria control and elimination. Currently, polymerase chain reaction (PCR) combined with Sanger sequencing is regarded as the gold standard for mutation detection.
View Article and Find Full Text PDFMol Hortic
November 2024
Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
The transfer of genetic material between stocks and scions of grafted plants has been extensively studied; however, the nature and frequency of the transferred material remain elusive. Here, we report a grafting system involving woody goji as the stock and herbaceous tomato as the scion, which was developed using in vitro and in vivo approaches; the results confirmed horizontal transfer of multiple nuclear DNA fragments from donor goji cells to recipient tomato cells. Tomato tissues containing goji donor DNA fragments at or near the grafting junctions had a perennial-biased anatomical structure, from which roots or shoots were regenerated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!