Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Leaf spot disease caused by Cercospora is responsible for crop and profitability losses in sugar beet crops in the US and worldwide. The cfp gene that encodes a protein that exports phytotoxic cercosporins from Cercospora was conjugally transferred to sugar beet using Rhizobium radiobacter (Agrobacterium tumefaciens), to improve Cercospora-induced leafspot resistance. Conditions for shoot regeneration were optimized to increase regeneration/transformation efficiencies. Low-light and room-temperature conditions were favorable to sugar beet regeneration without callus when cytokinin had been added to the tissue culture medium. Using this procedure adventitious shoots from leaf pieces were obtained in a simple, one-step regeneration procedure. T7, a cfp-transgenic clone verified by PCR with gene-specific primers, is being propagated for leaf spot disease resistance evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1023419000749 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!