A simultaneous synthesis of (R)-1-phenylethanol and (R)-alpha-methylbenzylamine from racemic alpha-methylbenzylamine was achieved using an omega-transaminase, alcohol dehydrogenase, and glucose dehydrogenase in a coupled reaction. Racemic alpha-methylbenzylamine (100 mM) was converted to 49 mM (R)-1-phenylethanol (> 99% ee) and 48 mM (R)-alpha-methylbenzylamine (> 98% ee) in 18 h at 37 degrees C. This method was also used to overcome product inhibition of omega-TA by the ketone product in the kinetic resolution of racemic amines at high concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1023500406897DOI Listing

Publication Analysis

Top Keywords

racemic alpha-methylbenzylamine
12
simultaneous synthesis
8
r-1-phenylethanol r-alpha-methylbenzylamine
8
r-alpha-methylbenzylamine racemic
8
synthesis enantiomerically
4
enantiomerically pure
4
pure r-1-phenylethanol
4
racemic
4
alpha-methylbenzylamine omega-transaminase/alcohol
4
omega-transaminase/alcohol dehydrogenase/glucose
4

Similar Publications

The chiral media is crucial to the chiral recognition and separation of enantiomers. In this study, we report the preparation of novel chiral carbon nanoparticles (CCNPs) via surface passivation using glucose as the carbon source and S-(-)-α-methylbenzylamine as the chiral ligand. The structures of the obtained CCNPs are characterized via FT-IR, Raman spectroscopy, DLS, XPS, XRD, TEM, and zeta potential analysis.

View Article and Find Full Text PDF

Chiral α-methylbenzylamine and α-phenylethanol are important building blocks for the industrial production of optically active drugs, bioactive compounds. Methods for the simultaneous synthesis of chiral α-methylbenzylamine and α-phenylethanol remain rare. Herein, a biocatalytic redox cascade reaction composed of ω-transaminase, aldo-keto reductase, and glutamate dehydrogenase for chiral α-methylbenzylamine and α-phenylethanol synthesis from racemic α-methylbenzylamine was constructed.

View Article and Find Full Text PDF

The present work aims at addressing the issue of molecular handedness in glassy and liquid states and its impact on heterogeneous equilibrium. For this purpose, we evaluated the glass forming ability (GFA), crystallization propensity, molecular mobility and hydrogen bonding structure of a chiral conglomerate forming system, -acetyl-α-methylbenzylamine (Nac-MBA), at various enantiomeric excesses (ees) using experimental and computational techniques. We revealed that the rich relaxational landscape (Debye (D), α, β and ϒ) and the temperature dependence of the time scale of each process were insensitive to chirality.

View Article and Find Full Text PDF

We synthesized the optically active epineoclausenamide by utilizing chiral reagents, such as R-α-methylbenzylamine and S-α-methylbenzylamine, for the resolution of the intermediate (trans-3-phenyl-oxiranecarboxylic acid 12), followed by amide exchange, cyclization, and reduction, unlike previously reported methods. The Meerwein-Ponndorf-Verley reduction was used to asymmetrically reduce neoclausenamidone. A plausible reduction mechanism of this method was elucidated.

View Article and Find Full Text PDF

Porcine kidney d-amino acid oxidase-derived R-amine oxidases with new substrate specificities.

Enzymes

December 2020

Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, Japan. Electronic address:

An R-stereoselective amine oxidase and variants with markedly altered substrate specificity toward (R)-amines were generated from porcine d-amino acid oxidase (pkDAO), based on the X-ray crystallographic analysis of the wild-type enzyme. The new R-amine oxidase, a pkDAO variant (Y228L/R283G), acted on α-MBA and its derivatives, α-ethylbenzylamine, alkylamine, and cyclic secondary amines, totally losing the activities toward the original substrates, d-amino acids. The variant is enantiocomplementary to the flavin-type S-stereoselective amine oxidase variant from Aspergillus niger.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!