Emphysema is a pulmonary disease that may be exacerbated by inhaled particles. Over the years, many animal models of emphysema have been developed that may be useful in studying the effects of inhaled particles on humans with emphysema. Models have been described in many species, and many approaches have been described for inducing emphysema. Emphysema in humans is a parenchymal component of chronic obstructive pulmonary disease and frequently coexists in a complex with disease of the airways such as bronchitis. Animal models of emphysema usually recapitulate only one or a few aspects of this complex disease. Thus, the emphysema model must be selected carefully in order to answer specific questions about the interactive effects of particles and emphysema.

Download full-text PDF

Source
http://dx.doi.org/10.1080/089583700750019558DOI Listing

Publication Analysis

Top Keywords

animal models
12
models emphysema
12
emphysema
9
disease emphysema
8
pulmonary disease
8
inhaled particles
8
complex disease
8
disease
5
emphysema relevance
4
relevance studies
4

Similar Publications

Comprehensive review of animal models in diabetes research using chemical agents.

Lab Anim

January 2025

Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.

Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Fetal Cartilage Progenitor Cells in the Repair of Osteochondral Defects.

JB JS Open Access

January 2025

Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky.

Background: Therapies for cartilage restoration are of great interest, but current options provide limited results. In salamanders, interzone (IZN) tissue can regenerate large joint lesions. The mammalian homolog to this tissue exists during fetal development and exhibits remarkable chondrogenesis in vitro.

View Article and Find Full Text PDF

Gallbladder carcinoma in the era of artificial intelligence: Early diagnosis for better treatment.

World J Gastrointest Oncol

January 2025

Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Kuala Lumpur, Malaysia.

Gallbladder carcinoma (GBC) is the most common malignant tumor of biliary tract, with poor prognosis due to its aggressive nature and limited therapeutic options. Early detection of GBC is a major challenge, with most GBCs being detected accidentally during cholecystectomy procedures for gallbladder stones. This letter comments on the recent article by Deqing in the , which summarized the various current methods used in early diagnosis of GBC, including endoscopic ultrasound (EUS) examination of the gallbladder for high-risk GBC patients, and the use of EUS-guided elastography, contrast-enhanced EUS, trans-papillary biopsy, natural orifice transluminal endoscopic surgery, magnifying endoscopy, choledochoscopy, and confocal laser endomicroscopy when necessary for early diagnosis of GBC.

View Article and Find Full Text PDF

Despite advancements in preclinical and clinical spinal cord stimulation (SCS) research, the mechanisms of SCS action remain unclear. This may result from challenges in translatability of findings between species. Our systematic review (PROSPERO: CRD42023457443) aimed to comprehensively characterize the important translational components of preclinical SCS models, including stimulating elements and stimulation specifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!