Regulation of the growth arrest and DNA damage-inducible gene 45 (GADD45) by peroxisome proliferator-activated receptor gamma in vascular smooth muscle cells.

Circ Res

Division of Endocrinology, Diabetes and Hypertension and The Gonda (Goldschmied) Diabetes Center, David Geffen School of Medicine, University of California, Los Angeles, Calif 90095, USA.

Published: August 2003

Peroxisome proliferator-activated receptor (PPAR) gamma is activated by thiazolidinediones (TZDs), widely used as insulin-sensitizing agents for the treatment of type 2 diabetes. TZDs have been shown to induce apoptosis in a variety of mammalian cells. In vascular smooth muscle cells (VSMCs), proliferation and apoptosis may be competing processes during the formation of restenotic and atherosclerotic lesions. The precise molecular mechanisms by which TZDs induce apoptosis in VSMCs, however, remain unclear. In the present study, we demonstrate that the TZDs rosiglitazone (RSG), troglitazone (TRO), and a novel non-TZD partial PPARgamma agonist (nTZDpa) induce caspase-mediated apoptosis of human coronary VSMCs. Induction of VSMC apoptosis correlated closely with an upregulation of growth arrest and DNA damage-inducible gene 45 (GADD45) mRNA expression and transcription, a well-recognized modulator of cell cycle arrest and apoptosis. Using adenoviral-mediated overexpression of a constitutively active PPARgamma mutant and the irreversible PPARgamma antagonist GW9662, we provide evidence that PPARgamma ligands induce caspase-mediated apoptosis and GADD45 expression through a receptor-dependent pathway. Deletion analysis of the GADD45 promoter revealed that a 153-bp region between -234 and -81 bp proximal to the transcription start site, containing an Oct-1 element, was crucial for the PPARgamma ligand-mediated induction of the GADD45 promoter. PPARgamma activation induced Oct-1 protein expression and DNA binding and stimulated activity of a reporter plasmid driven by multiple Oct-1 elements. These findings suggest that activation of PPARgamma can lead to apoptosis and growth arrest in VSMCs, at least in part, by inducing Oct-1-mediated transcription of GADD45. The full text of this article is available online at http://www.circresaha.org.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000088344.15288.E6DOI Listing

Publication Analysis

Top Keywords

growth arrest
12
arrest dna
8
dna damage-inducible
8
damage-inducible gene
8
gene gadd45
8
peroxisome proliferator-activated
8
proliferator-activated receptor
8
vascular smooth
8
smooth muscle
8
muscle cells
8

Similar Publications

Dried Apricot Polyphenols Suppress the Growth of A549 Human Lung Adenocarcinoma Cells by Inducing Apoptosis via a Mitochondrial-Dependent Pathway.

Foods

January 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

Dried apricots are rich in a variety of polyphenols, which have anti-cancer activity. In this study, 949 phenolic substances were found by means of UPLC-MS/MS, mainly including 2',7-dihydroxy-3',4'-dimethoxyisoflavan, scopoletin, rutin, quercetin-3-O-robinobioside, and elaidolinolenic acid. The results indicated that dried apricot polyphenols (DAPs) could cause cell cycle arrest in the G0/G1 and G2/M phases by decreasing the cyclin D1, CDK4, cyclin B1, CDK1, and CDK6 levels in A549 human lung adenocarcinoma cells.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin ( L. agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models.

View Article and Find Full Text PDF

Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.

View Article and Find Full Text PDF

This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells.

View Article and Find Full Text PDF

: Pancreatic Ductal Adeno-Carcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. Disruption of the circadian clock, which regulates key cellular processes, has been implicated in PDAC initiation and progression. Hence, targeting circadian clock components may offer new therapeutic opportunities for the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!