Time course of early and late changes in plasma DNA in trauma patients.

Clin Chem

Accident & Emergency Medicine Academic Unit, Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR.

Published: August 2003

Background: Cell-free DNA concentrations increase in the circulation of patients after trauma and may have prognostic potential, but little is know concerning the temporal changes or clearance of the DNA or its relationships with posttraumatic complications. We investigated temporal changes in plasma DNA concentrations in patients after trauma with use of real-time quantitative PCR.

Methods: Serial plasma samples were taken from two trauma populations. In the first study, samples were collected every 20 min from 25 patients within the first 3 h of trauma. In the second study, samples were collected every day from 36 other trauma patients admitted to the intensive care unit (ICU).

Results: In the first study, plasma DNA was increased within 20 min of injury and was significantly higher in patients with severe injury and in patients who went on to develop organ failure. In patients with less severe injuries, plasma DNA concentrations decreased toward reference values within 3 h. In the second study, plasma DNA concentrations were higher in patients who developed multiple organ dysfunction syndrome between the second and fourth days of admission than in patients who did not develop the syndrome. In patients who remained in the ICU with continuing organ dysfunction, plasma DNA remained higher than in healthy controls even at 28 days after injury. Most survivors with multiple organ dysfunction syndrome showed an initial very high peak followed by a prolonged smaller increase.

Conclusions: Plasma DNA concentrations increase early after injury and are higher in patients with severe injuries and in those who develop organ failure. Increased plasma DNA persists for days after injuries, especially in patients with multiple organ dysfunction syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1373/49.8.1286DOI Listing

Publication Analysis

Top Keywords

plasma dna
32
dna concentrations
20
organ dysfunction
16
patients
13
patients trauma
12
higher patients
12
patients severe
12
multiple organ
12
dysfunction syndrome
12
dna
10

Similar Publications

A novel method for detecting genetic biomarkers in blood-based liquid biopsies using surface plasmon resonance imaging and magnetic beads shows promise in cancer diagnosis and monitoring.

Talanta

January 2025

Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy. Electronic address:

Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy.

View Article and Find Full Text PDF

While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.

View Article and Find Full Text PDF

Maximal Intensity Exercise Induces Adipokine Secretion and Disrupts Prooxidant-Antioxidant Balance in Young Men with Different Body Composition.

Int J Mol Sci

January 2025

Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.

Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).

View Article and Find Full Text PDF

Gastric cancer (GC) remains the most common malignant tumor of the gastrointestinal tract and one of the leading causes of cancer-related deaths worldwide. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), are involved in the pathogenesis and progression of GC and, therefore, may be potential diagnostic and prognostic biomarkers. Our work was aimed at investigating the predicted regulation of by miR-129-5p and miR-3613-3p and the clinical value of their aberrant expression in GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!