The study assessed the biochemical differences between right hemispheric dominant and left hemispheric dominant individuals. The HMG CoA reductase activity, isoprenoid metabolites--serum digoxin--serum magnesium, and RBC membrane Na+-K+ ATPase activity were also studied. The results showed that right hemispheric chemically dominant individuals had increased (i) HMG CoA reductase activity, elevated digoxin levels, (ii) reduced RBC membrane Na+-K+ ATPase activity and serum magnesium levels. Left hemispheric chemically dominant individuals had the opposite patterns. Right hemispheric chemical dominance represents a hyperdigoxinemic/hypomagnesemic state with membrane sodium-potassium ATPase inhibition. Left hemispheric chemical dominance represents the reverse pattern with hypodigoxinemia/hypermagnesemia and membrane sodium-potassium ATPase stimulation. Cerebral chemical dominance can regulate calcium/magnesium metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207450390220040 | DOI Listing |
Heliyon
July 2024
Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
The pulp and paper industry, a major global sector, supports economies and jobs while contributing to various products. While providing valuable products, and despite Best Available Techniques (BAT) being used, managing wastewater effectively remains a key area for developing technologies and alternatives for environmental protection. Activated sludge (AS) systems are commonly used for effluent treatment, where microorganisms composition influences reactor efficiency.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.
View Article and Find Full Text PDFWater Res
January 2025
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China. Electronic address:
Microplastics (MPs) easily migrate into deeper soil layers, posing potential risks to subterranean habitats and groundwater. However, the mechanisms governing the vertical migration of MPs in soil, particularly aged MPs, remain unclear. In this study, we investigate the transport of MPs under varying MPs properties, soil texture and hydrology conditions.
View Article and Find Full Text PDFAm J Trop Med Hyg
December 2024
Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
To identify potential sources of hookworm infections in a Ghanaian community of endemicity that could be targeted to interrupt transmission, we tracked the movements of infected and noninfected persons to their most frequented locations. Fifty-nine participants (29 hookworm positives and 30 negatives) wore GPS trackers for 10 consecutive days. Their movement data were captured in real time and overlaid on a community grid map.
View Article and Find Full Text PDFData Brief
February 2025
Estación Experimental de Aula Dei, EEAD - CSIC, Ave. Montañana 1005, 50059 Zaragoza, Spain.
The dataset [1] hosts pedological info and images of the lands -locally known as - of the outcropping gypsiferous core of the Barbastro-Balaguer anticline (Fig. 1). It stands out in the landscape for the linear reliefs due to outcrops of dipping strata with differential resistance to erosion, and also because of its whitish color (Fig.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!