4-aminopyridine (4AP) is a general blocker of voltage-dependent K+ channels. This pyridine derivative has also been shown to inhibit T cell proliferation, to modulate immune responses and to alleviate some of the symptoms associated with neurological disorders such as multiple sclerosis, myasthenia gravis and Alzheimer's disease. 4AP triggers a Ca2+ response in lymphocytes, astrocytes, neurons and muscle cells but little is known about the regulation of the 4AP response in these cells. We report that 4AP induced a non-capacitative transplasma membrane influx of Ca2+ in Jurkat T lymphocytes. The influx of Ca2+ was not affected by activation or inhibition of protein kinase A (PKA). In contrast, activation of protein kinase C (PKC) by phorbol myristyl acetate (PMA), mezerein or 1-oleoyl-2-acetyl-sn-glycerol (OAG) inhibited the influx of Ca2+ triggered by 4AP. The inhibitory effect of PKC could be prevented by prior exposure of the cells to the PKC inhibitor GF 109203X. Under these conditions, mezerein and OAG no longer inhibited the 4AP-dependent Ca2+ response. Inhibition of serine and threonine protein phosphatases PP1 and PP2A by treating the cells with calyculin A (CalA) reduced the Ca2+ response to 4AP. Okadaic acid (OA) had no effect, suggesting an involvement of PP1. A combination of CalA and OAG (or PMA) abolished the influx of Ca2+ induced by 4AP, adding further evidence to the importance of protein phosphorylation in the modulation of the 4AP response. Our data suggest that the transplasma membrane influx of Ca2+ triggered by 4AP in Jurkat T cells can be modulated by the opposite actions of PKC and protein serine and threonine phosphatase(s).

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-4165(03)00120-xDOI Listing

Publication Analysis

Top Keywords

influx ca2+
24
protein kinase
12
transplasma membrane
12
membrane influx
12
ca2+ triggered
12
ca2+ response
12
ca2+
9
4ap
9
jurkat lymphocytes
8
4ap response
8

Similar Publications

Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!