Noncovalent interactions between two squarylium dyes and various model proteins have been explored. NN127 and SQ-3 are symmetric and asymmetric squarylium dyes, respectively, the fluorescence emissions of which have been shown to be enhanced upon complexation with proteins such as bovine serum albumin (BSA), human serum albumin (HSA), beta-lactoglobulin A, and trypsinogen. Although these dyes are poorly soluble in aqueous solution, they can be dissolved first in methanol followed by dilution with aqueous buffer without precipitation, and are then suitable for use as fluorescent labels in protein determination studies. The nature of interactions between these dyes and proteins was studied using a variety of buffer systems, and it was found that electrostatic interactions are involved but not dominant. Dye/protein stoichiometries in the noncovalent complexes were found to be 1:1 for SQ-3, although various possible stoichiometries were found for NN127 depending upon pH and protein. Association constants on the order of 10(5) and 10(7) were found for noncovalent complexes of SQ-3 and NN127, respectively, with HSA, indicating stronger interactions of the symmetric dye with proteins. Finally, HSA complexes with NN127 were determined by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). In particular, NN127 shows promise as a reagent capable of fluorescently labeling analyte proteins for analysis by CE-LIF without itself being significantly fluorescent under the aqueous solution conditions studied herein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1570-0232(03)00367-2 | DOI Listing |
In this study, we designed squaraine-based dyes with a 2-amino pyrrole donor unit and acene groups like anthracene and pentacene. These dyes incorporate three different electron-withdrawing groups - cyanoacrylate (A1), phosphonate (A2) and boronic acid (A3) - as linkers to the TiO semiconductor. The spectroscopic, electronic and photochemical properties of these compounds were investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) simulations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2023
Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan.
Squarylium-based π-electronic cation with an augmented dipole was synthesized by methylation of zwitterionic squarylium. The cation formed various ion pairs in combination with anions, and the ion pairs exhibited distinct photophysical properties in the dispersed state, ascribed to the formation of J- and H-aggregates. The ion pairs provided solid-state assemblies based on cation stacking.
View Article and Find Full Text PDFPhotochem Photobiol
January 2023
Department of Chemistry, Centre of Chemistry (CQ-UM), University of Minho, Braga, Portugal.
The antifungal performance and the possible use as fluorescent probes of a series of squarylium dyes derived from indolenine and benzo[e]indole previously synthesized was evaluated. Some photophysical properties were performed in ethanol and phosphate buffer, and the type of aggregates form in phosphate buffer was analyzed. Using the 1,3-diphenylisobenzofuran assay, a qualitative assessment of the capacity of dyes to produce singlet oxygen after irradiation was performed.
View Article and Find Full Text PDFAnal Chem
April 2020
Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China.
Accurate and sensitive imaging of hypoxia associated with inflammatory bowel disease (IBD) is significant for the precise diagnosis and treatment of this disease, but it remains a challenge for traditional hypoxia-activatable fluorescence probes because of a more moderate hypoxic state during IBD than under other pathological conditions. To address this issue, herein, we designed a hypoxia-activatable and cytoplasmic protein-powered fluorescence cascade amplifier, named HCFA, to image hypoxia associated with IBD . In our design, a 4-aminobenzoic acid (azo)-modified mesoporous silica nanoparticle (MSN) was used as a container to load black hole quencher 2 (BHQ2) and cytoplasmic protein-binding squarylium dye (SQ); then, the β-cyclodextrin polymer (β-CDP) combined with azo through a host-guest interaction to form HCFA.
View Article and Find Full Text PDFChemistry
January 2019
Department of Chemistry, Institute of Molecular Plus, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China.
A series of symmetric squarylium dyes (SQDPA-X) with different halogen (X=F, Cl, Br, I) substituents have been developed. The photophysical properties could be facilely tuned by the halogen modulation effects. The strategy of incorporating different halogen substitutions into AIE active luminogens enables a facile approach for exploring new intriguing organic fluorescent dyes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!