Sodium selenite, a common dietary form of selenium, is recognized as essential in animal and human nutrition. Mechanisms regulating the inflammatory response of the immune system involve regulation of apoptosis and control of reactive oxygen species (ROS) production. In this study, the effect of sodium selenite on ROS production and cell-death rates in macrophages and T cells was investigated. Exposing Jurkat T cells or J774.2 macrophages to >5 micro M sodium selenite induced cell death. In both Jurkat T cells and J774.2 macrophages, rapid loss of the cell's capacity to generate dichlorofluorescein-sensitive ROS preceded cell death. The main cellular source of ROS was found to be the mitochondria electron-transfer chain. DEVDase activity in the cells remained unchanged and even decreased with time, as well as DNA fragmentation level, which was almost unaffected, indicating cell death with necrotic characteristics. tert-Butyl hydroperoxide at a concentration of 5 micro M was beneficial in attenuating the rate of cell death. The superoxide scavenger Tiron was tested for its ability to protect the cells against selenium. Tiron completely protected the J774.2 macrophage cell line against selenium and attenuated the cell death effect in Jurkat T cells. In the presence of the superoxide dismutase-mimicking compound tempol, selenium's macrophage-killing effect was inhibited. Therefore, our results show that, at least in vitro, selenite induces changes in the balance between mitochondrial superoxide and hydrogen peroxide production, which can facilitate cell death in immune system cells. This may be one mechanism by which selenium down-regulates the immune system's inflammatory response and protects against overproduction of peroxides.

Download full-text PDF

Source
http://dx.doi.org/10.1089/152308603322110850DOI Listing

Publication Analysis

Top Keywords

cell death
28
jurkat cells
16
death jurkat
12
cells j7742
12
j7742 macrophages
12
sodium selenite
12
cell
8
cells
8
inflammatory response
8
immune system
8

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!