Trans-10,cis-12 CLA increases liver and decreases adipose tissue lipids in mice: possible roles of specific lipid metabolism genes.

Lipids

Western Human Nutrition Research Center, ARS, USDA, and Department of Nutrition, University of California, Davis, California 95616, USA.

Published: May 2003

Although consumption of CLA mixtures has been associated with several health effects, less is known about the actions of specific CLA isomers. There is evidence that the t10,c12-CLA isomer is associated with alterations in body and organ weights in animals fed CLA, but the mechanisms leading to these changes are unclear. The purpose of this study was to determine the effects of two commonly occurring isomers of CLA on body composition and the transcription of genes associated with lipid metabolism. Eight-week-old female mice (n = 11 or 12/group) were fed either a control diet or diets supplemented with 0.5% c9,t11-CLA or t10,c12-CLA isomers or 0.2% of the peroxisome proliferator-activated receptor alpha (PPARalpha) agonist fenofibrate for 8 wk. Body and retroperitoneal adipose tissue weights were significantly lower (6-10 and 50%, respectively), and liver weights were significantly greater (100%) in the t10,c12-CLA and the fenofibrate groups compared with those in the control group; body and tissue weights in the c9,t11-CLA group did not differ from those in the control group. Livers from animals in the t10,c12-CLA group contained five times more lipids than in the control group, whereas the lipid content of the fenofibrate group did not differ from that in the control group. Although fenofibrate increased the mRNA for PPARalpha, t10,c12-CLA decreased it. These results suggest that PPARalpha did not mediate the effects of t10,c12-CLA on body composition. The CLA isomers and fenofibrate altered mRNA levels for several proteins involved in lipid metabolism, but the most striking difference was the reduction of mRNA for leptin and adiponectin in the t10,c12-CLA group. These initial results suggest that changes associated with energy homeostasis and insulin action may mediate the effects of t10,c12-CLA on lipid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11745-003-1090-0DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
16
control group
16
adipose tissue
8
cla isomers
8
t10c12-cla
8
body composition
8
tissue weights
8
group
8
group differ
8
differ control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!