Lucifer Yellow CH (LY), a membrane-impermeant fluorescent dye, has been used in electro-physiological studies to visualize cell morphology, with little concern about its pharmacological effects. We investigated its effects on TTX-sensitive voltage-gated Na+ channels in mouse taste bud cells and hippocampal neurons under voltage-damp conditions. LY applied inside cells irreversibly slowed the inactivation of Na+ currents upon exposure to light of usual intensities. The inactivation time constant of Na+ currents elicited by a depolarization to -15 mV was increased by fourfold after a 5 min exposure to halogen light of 3200 Ix at source (3200 Ix light), and sevenfold after a 1-min exposure to 12,000 Ix light. A fraction of the Na+ current became non-inactivating following the exposure. The non-inactivating current was approximately 20 % of the peak total Na+ current after a 5 min exposure to 3200 Ix light, and approximately 30 % after a 1 min exposure to 12,000 Ix light. Light-exposed LY shifted slightly the current-voltage relationship of the peak Na+ current and of the steady-state inactivation curve, in the depolarizing direction. A similar light-dependent decrease in kinetics occurred in whole-cell Na+ currents of cultured mouse hippocampal neurones. Single-channel recordings showed that exposure to 6500 Ix light for 3 min increased the mean open time of Na+channels from 1.4 ms to 2.4 ms without changing the elementary conductance. The pre-incubation of taste bud cells with 1 mM dithiothreitoL a scavenger of radical species, blocked these LY effects. These results suggest that light-exposed LY yields radical species that modify Na+ channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2343020 | PMC |
http://dx.doi.org/10.1113/jphysiol.2003.040733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!