Background: Several reports demonstrate that withdrawal from long-term ethanol exposure is associated with significant central nervous system neurotoxicity, produced at least in part by increased activity of N-methyl-d-aspartate receptors (NMDARs). Recent evidence suggests that elevations in the synthesis and release of the polyamines spermidine and spermine, which are known modulators of NMDARs, contribute to the increased activity of the receptor during ethanol withdrawal. Therefore, the goal of this investigation was to examine what role, if any, spermidine and spermine have in the generation of ethanol withdrawal-induced neurotoxicity.
Methods: Neurotoxicity (measured as fluorescence of the cell death indicator propidium iodide, PI), glutamate release (measured by high-performance liquid chromatography analysis), and polyamine concentrations (by high-performance liquid chromatography) were measured in rat hippocampal slice cultures undergoing withdrawal from chronic (10 day) ethanol exposure (100 mM). In addition, the effects of the polyamine synthesis inhibitor di-fluoro-methyl-ornithine (DFMO, 0.1-100 nM) and NMDAR polyamine-site antagonists ifenprodil, arcaine, and agmatine (1 nM-100 microM) on ethanol withdrawal- and NMDA-induced neurotoxicity were measured.
Results: Ethanol withdrawal significantly increased glutamate release (peaking at 18 hr with a 53% increase), increased concentrations of putrescine and spermidine (136% and 139% increases, respectively, at 18 hr), and produced significant cytotoxicity in the CA1 hippocampal region (56% increase in PI staining relative to controls) of the cultures. The cell death produced by ethanol withdrawal was significantly inhibited by ifenprodil (IC(50) = 14.9 nM), arcaine (IC(50) = 37.9 nM), agmatine (IC(50) = 41.5 nM), and DFMO (IC(50) = 0.6 nM). NMDA (5 microM) significantly increased PI staining in the CA1 region of the hippocampal cultures (365% relative to controls), but ifenprodil, arcaine, agmatine, and DFMO all failed to significantly affect this type of toxicity.
Conclusions: These data implicate a role for polyamines in ethanol withdrawal-induced neurotoxicity and suggest that inhibiting the actions of polyamines on NMDARs may be neuroprotective under these conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.ALC.0000075824.10502.DD | DOI Listing |
Neuropsychopharmacol Rep
March 2025
Department of Biology and Microbiology, Faculty of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan.
Introduction: Substance use disorders, particularly alcohol use disorders, represent a significant public health problem, with adolescents particularly vulnerable to their adverse effects. This study examined the possible anxiolytic and antidepressant effects of biotin, a crucial vitamin for brain function, in attenuating the behavioral and neurobiological changes associated with alcohol withdrawal in adolescent rats.
Materials And Methods: Sixty male Sprague-Dawley rats were exposed to a 20% ethanol solution for 21 days, followed by a 21-day drug-free period to assess long-term behavioral and physiological changes.
Neurosci Lett
January 2025
Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran. Electronic address:
Purpose: Regarding a wide variety of researches conducted with various therapeutic effect of crocin, the main constituent of saffron, the current study aims to assess the efficacy of crocin to improve learning and memory impairment caused by withdrawal following concurrent usage of ethanol (Eth) and nicotine (Nic) in adolescent male rats.
Methods: In order to test memory fucntion, Morris water maze and passive avoidance methods were applied in male Wistar rats undergone adolescent Nic-Eth withdrawal and the effect of crocin treatment was assessed at both behavioral and biochemical levels. The biochemical parameters included the inflammatory cytokines, indicators of oxidative stress and cholinergic metabolism within the hippocampla tissues.
Sci Adv
September 2024
Department of Biophysics and Neurobiology, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China.
Alcohol use disorder is highly prevalent worldwide, with characteristically severe pain sensitivity during withdrawal. Here, we established a mouse model of hyperalgesia during ethanol withdrawal (EW) before addiction to investigate the window for onset and underlying mechanisms. Viral tracing with in vivo microendoscopic and two-photon calcium imaging identified a circuit pathway from dorsal hippocampal CA1 glutamatergic neurons (dCA1) to anterior cingulate cortex glutamatergic neurons (ACC) activated in EW mice with hyperalgesia.
View Article and Find Full Text PDFBiomedicines
July 2024
Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA.
Exercise has increasingly been recognized as an adjunctive therapy for alcohol-use disorder (AUD), yet our understanding of its underlying neurological mechanisms remains limited. This knowledge gap impedes the development of evidence-based exercise guidelines for AUD treatment. Chronic ethanol (EtOH) exposure has been shown to upregulate and sensitize kappa opioid receptors (KORs) in the nucleus accumbens (NAc), which is innervated by dopamine (DA) neurons in the midbrain ventral tegmental area (VTA), which may contribute to AUD-related behaviors.
View Article and Find Full Text PDFbioRxiv
July 2024
The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA.
Corticotropin-releasing factor (CRF, encoded by ) signaling is thought to play a critical role in the development of excessive alcohol drinking and the emotional and physical pain associated with alcohol withdrawal. Here, we investigated the parasubthalamic nucleus (PSTN) as a potential source of CRF relevant to the control of alcohol consumption, affect, and nociception in mice. We identified PSTN neurons as a neuronal subpopulation that exerts a potent and unique influence on behavior by promoting not only alcohol but also saccharin drinking, while PSTN neurons are otherwise known to suppress consummatory behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!