Quaternary ammonium compounds have received recent attention due to their potent in vivo antimalarial activity based on their ability to inhibit de novo phosphatidylcholine synthesis. Here we show that in addition to this, heme binding significantly contributes to the antimalarial activity of these compounds. For the study, we used a recently synthesized bis-quaternary ammonium compound, T16 (1,12-dodecanemethylene bis[4-methyl-5-ethylthiazolium] diodide), which exhibits potent antimalarial activity (50% inhibitory concentration, approximately 25 nM). Accumulation assays reveal that this compound is readily concentrated several hundredfold (cellular accumulation ratio, approximately 500) into parasitized erythrocytes. Approximately 80% of the drug was shown to be distributed within the parasite, approximately 50% of which was located in the parasite food vacuoles. T16 uptake was affected by anion substitution (permeation increasing in the order Cl(-) < Br(-) = NO(3)(-) < I(-) < SCN(-)) and was sensitive to furosemide-properties similar to substrates of the induced new permeability pathway in infected erythrocytes. Scatchard plot analysis of in situ T16 binding revealed high-affinity and low-affinity binding sites. The high-affinity binding site K(d) was similar to that measured in vitro for T16 and ferriprotoporphyrin IX (FPIX) binding. Significantly, the capacity but not the K(d) of the high-affinity binding site was decreased by reducing the concentration of parasite FPIX. Decreasing the parasite FPIX pool also caused a marked antagonism of T16 antimalarial activity. In addition, T16 was also observed to associate with parasite hemozoin. Binding of T16 to FPIX in the digestive food vacuole is shown to be critical for drug accumulation and antimalarial activity. These data provide additional new mechanisms of antimalarial activity for this promising new class of antimalarial compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166076PMC
http://dx.doi.org/10.1128/AAC.47.8.2584-2589.2003DOI Listing

Publication Analysis

Top Keywords

antimalarial activity
28
heme binding
8
binding contributes
8
antimalarial
8
contributes antimalarial
8
high-affinity binding
8
binding site
8
parasite fpix
8
activity
7
binding
7

Similar Publications

Objective: Glucocorticoid (GC) tapering and withdrawal to reduce damage represents a key aspect of the European Alliance of Associations for Rheumatology (EULAR) SLE recommendations. However, optimal strategies for relapse-free GC cessation remain ill-defined. We characterised clinical predictors and their combined effect on flares in patients with SLE who discontinued GC.

View Article and Find Full Text PDF

Importance: Identifying environmental factors that contribute to disease onset/activity in PV stands to improve clinical outcomes and patient quality of life by strategies aimed at reducing specific disease promoting exposures and promoting personalized clinical management strategies.

Objective: To evaluate the association between hydroxychloroquine use and the development of pemphigus using population level, publicly available, FDA-generated data.

Design: Observational, retrospective, case-control, pharmacovigilance analysis.

View Article and Find Full Text PDF

Quinoline: A Novel Solution for Next-Generation Pesticides, Herbicides, and Fertilizers.

Appl Biochem Biotechnol

January 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China.

Quinoline is a nitrogen-containing heterocycle compound widely used in the medical industry for its pharmacological properties, such as its antimalarial, antimicrobial, antiparasitic, anti-inflammatory, and anticancer activities. Beyond its medical significance, quinoline shows promising applications in agriculture as a safe and effective pesticide, herbicide, and fertilizer. This review explores the evolution of quinoline research, beginning with its history and synthesis and transitioning to its biological activities and their relevance in agriculture.

View Article and Find Full Text PDF

Novel antimalarial 3-substituted quinolones isosteres with improved pharmacokinetic properties.

Eur J Med Chem

December 2024

School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK. Electronic address:

Aryl quinolone derivatives can target the cytochrome bc complex of Plasmodium falciparum, exhibiting excellent in vitro and in vivo antimalarial activity. However, their clinical development has been hindered due to their poor aqueous solubility profiles. In this study, a series of bioisosteres containing saturated heterocycles fused to a 4-pyridone ring were designed to replace the inherently poorly soluble quinolone core in antimalarial quinolones with the aim to reduce π-π stacking interactions in the crystal packing solid state, and a synthetic route was developed to prepare these alternative core derivatives.

View Article and Find Full Text PDF

Artemisinin (ART), a natural product isolated from the traditional Chinese plant Artemisia annua L., has shown neuroprotective properties in addition to its well-established antimalarial activities. This study investigates the therapeutic effect of ART in ischemic stroke (IS) and delves into its functional mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!