Pharmacokinetic (PK) and pharmacodynamic (PD) properties for the selection of resistant pneumococci were studied by using three strains of the same serotype (6B) for mixed-culture infection in time-kill experiments in vitro and in three different animal models, the mouse peritonitis, the mouse thigh, and the rabbit tissue cage models. Treatment regimens with penicillin were designed to give a wide range of T(>MIC)s, the amounts of time for which the drug concentrations in serum were above the MIC. The mixed culture of the three pneumococcal strains, 10(7) CFU of strain A (MIC of penicillin, 0.016 micro g/ml; erythromycin resistant)/ml, 10(6) CFU of strain B (MIC of penicillin, 0.25 micro g/ml)/ml, and 10(5) CFU of strain C (MIC of penicillin, 4 micro g/ml)/ml, was used in the two mouse models, and a mixture of 10(5) CFU of strain A/ml, 10(4) CFU of strain B/ml, and 10(3) CFU of strain C/ml was used in the rabbit tissue cage model. During the different treatment regimens, the differences in numbers of CFU between treated and control animals were calculated to measure the efficacies of the regimens. Selective media with erythromycin or different penicillin concentrations were used to quantify the strains separately. The efficacies of penicillin in vitro were similar when individual strains or mixed cultures were studied. The eradication of the bacteria, independent of the susceptibility of the strain or strains or the presence of the strains in a mixture or on their own, followed the well-known PK and PD rules for treatment with beta-lactams: a maximum efficacy was seen when the T(>MIC) was >40 to 50% of the observation time and the ratio of the maximum concentration of the drug in serum to the MIC was >10. It was possible in all three models to select for the less-susceptible strains by using insufficient treatments. In the rabbit tissue cage model, a regrowth of pneumococci was observed; in the mouse thigh model, the ratio between the different strains changed in favor of the less-susceptible strains; and in the mouse peritonitis model, the susceptible strain disappeared and was overgrown by the less-susceptible strains. These findings with the experimental infection models confirm the importance of eradicating all the bacteria taking part in the infectious process in order to avoid selection of resistant clones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166083PMC
http://dx.doi.org/10.1128/AAC.47.8.2499-2506.2003DOI Listing

Publication Analysis

Top Keywords

cfu strain
24
selection resistant
12
rabbit tissue
12
tissue cage
12
strain mic
12
mic penicillin
12
less-susceptible strains
12
strains
10
vitro three
8
three animal
8

Similar Publications

An attenuated live strain of HY9901 mutant Δgr provides protection against Vibrio alginolyticus in pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu).

Vet Immunol Immunopathol

January 2025

Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China. Electronic address:

Vibrio alginolyticus is a serious aquaculture bacterial pathogen, which is widely distributed in the ocean and rivers, and cause vibriosis in aquaculture. Therefore, it is imperative to develop effective vaccine to prevent vibriosis. In this study, the efficacy of gr deletion strain (Δgr) of V.

View Article and Find Full Text PDF

Foremost in the design of new β-lactamase inhibitors (BLIs) are the boronic acid transition state inhibitors (BATSIs). Two highly potent BATSIs being developed are S02030 and MB076 strategically designed to be active against cephalosporinases and carbapenemases, especially KPC. When combined with cefepime, S02030 and MB076 demonstrated potent antimicrobial activity against laboratory and clinical strains of expressing a variety of class A and class C β-lactamases, including and .

View Article and Find Full Text PDF

Proteomic Profiling and Pre-Clinical Efficacy of Antimicrobial Lithium Complex and Colistin Combination against Multi-drug Resistant Acinetobacter baumannii.

Microb Pathog

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. Electronic address:

Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii.

View Article and Find Full Text PDF

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Characterization of an Acetogenin-Carrying Nanosuspension and Its Effect on Bacteria of Interest in the Poultry Industry.

Microorganisms

December 2024

Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Tepic 63175, Mexico.

This work aimed to develop a nanosuspension (NSps) as an acetogenin (ACGs) carrier, using soy lecithin (SL) and hydroxypropyl-β-cyclodextrin (βCD) named NSps-βCDSL-ACGs. It was characterized by various spectroscopic techniques (DLS, FTIR, UV-vis diffuse reflectance). Moreover, the NSps morphology was observed by transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!