Intermolecular interactions were determined between a synthetic peptide corresponding to the third extracellular loop and several residues from the adjoining sixth and seventh transmembrane domains of the human cholecystokinin-1 receptor, CCK(1)-R(329-357), and the synthetic agonists Ace-Trp-Lys[NH(epsilon)CONH-o-(MePh)]-Asp-MePhe-NH(2) (GI5269) and the C1 N-isopropyl-N-(4-methoxyphenyl)acetamide derivative of 3-(1H-Indazol-3ylmethyl)-3-methyl-5-pyridin-3-yl-1,5-benzodiazepine (GI0122), using high-resolution nuclear magnetic resonance spectroscopy and computer simulations. Addition of the ligands to CCK(1)-R(329-357) in an aqueous solution of DPC micelles produced a number of intermolecular nuclear Overhauser enhancements (NOEs) to residues in TMs 6 and 7 of the receptor fragment. NOE-restrained molecular models of the GI5269 and GI0122/CCK(1)-R complexes provide evidence for overlapping ligand-binding sites for peptidic and nonpeptidic agonists. The proposed binding modes of GI5269 and GI0122 are supported by the structure-activity relationship of analogues and mutagenesis data for the CCK(1)-R selective antagonist L-364,718.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm030144zDOI Listing

Publication Analysis

Top Keywords

intermolecular interactions
8
peptidic nonpeptidic
8
nonpeptidic agonists
8
third extracellular
8
extracellular loop
8
interactions peptidic
4
agonists third
4
loop cholecystokinin
4
cholecystokinin receptor
4
receptor intermolecular
4

Similar Publications

In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.

View Article and Find Full Text PDF

The self-assembly of fibrin is a vital process in blood clotting, primarily facilitated by the interactions between knobs "A" and "B" in the central E region of one molecule and the corresponding holes "a" and "b" in the peripheral D regions of two other fibrin molecules. However, the precise function of the interactions between knob "B" and hole "b" during fibrin polymerization remains a subject of ongoing debate. The present study focuses on investigating intermolecular interactions between knob "B" and hole "b".

View Article and Find Full Text PDF

Controlled Self-assembly of Nanographdiynes Mediated by Molecular Dipoles Induced by Rotatory Asymmetric Substituents.

Chemistry

January 2025

Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organi, Zhongguancun North First Street 2, 100190, Beijing, CHINA.

The discrete π- stacks of specific lengths and orientation is crucial for understanding the impact of intermolecular interactions on optical or electronic properties of nanographdiynes. We designed and synthesized nanographdiynes modified with bulky rotatable asymmetric substituents. The peripheral substituents with different push-pull electronic properties can induce molecular dipoles perpendicular to nanoGDY π surface with different orientation.

View Article and Find Full Text PDF

We derive a new expression for the strength of a hydrogen bond (VHB) in terms of the elongation of the covalent bond of the donor fragment participating in the hydrogen bond (ΔrHB) and the intermolecular coordinates R (separation between the heavy atoms) and θ (deviation of the hydrogen bond from linearity). The expression includes components describing the covalent D-H bond of the hydrogen bond donor via a Morse potential, the Pauli repulsion, and electrostatic interactions between the constituent fragments using a linear expansion of their dipole moment and a quadratic expansion of their polarizability tensor. We fitted the parameters of the model using ab initio electronic structure results for six hydrogen bonded dimers, namely, NH3-NH3, H2O-H2O, HF-HF, H2O-NH3, HF-H2O, and HF-NH3, and validated its performance for extended parts of their potential energy surfaces, resulting in a mean absolute error ranging from 0.

View Article and Find Full Text PDF

A novel HSO-catalyzed ANRORC-type rearrangement of pyrazinones to imidazoles proceeding through pyridazino[]annulation with simultaneous introduction of a pyrazole ring at position 2 of the imidazole system has been developed, which offers efficient and expedited access to new biheterocyclic systems - 2-(pyrazol-3-ul)imidazoles and 2-(pyrazol-3-yl)imidazo[4,5-]pyridazines. Diverse bi--heterocyclic systems with the imidazo[4,5-]pyridazine-4,7-diamine moiety could be obtained in excellent yield when 5,6-dicyano-3-(2-oxo-2-ethyl)pyrazin-2(1)-ones interact with hydrazines the selective spiro-formation in a tandem ring-opening/ring-closing process, which allowed the simultaneous construction of five new C-N bonds. This new method is compatible with an array of functional groups, proceeds under mild reaction conditions with the involvement of commercially available reagents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!