Confocal imaging of Ca2+, pH, electrical potential, and membrane permeability in single living cells.

Methods Enzymol

Department of Cell Biology and Anatomy, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA.

Published: August 2003

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0076-6879(99)02031-5DOI Listing

Publication Analysis

Top Keywords

confocal imaging
4
imaging ca2+
4
ca2+ electrical
4
electrical potential
4
potential membrane
4
membrane permeability
4
permeability single
4
single living
4
living cells
4
confocal
1

Similar Publications

Background: To investigate the antibiofilm effect and mechanism of the silver nanowire (AgNW)-modified glass ionomer cement (GIC) against multi-species oral biofilm, and to examine the mechanical and biochemical properties of this novel GIC material.

Methods: Conventional GIC was incorporated with different concentrations of AgNW and silver nanoparticles (AgNP). Multi-species biofilms of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus fermentum, and Lactobacillus rhamnosus were cultured for 72 h on GIC specimens.

View Article and Find Full Text PDF

Objective: This study aims to investigate the correlation between the development of diabetic retinopathy (DR) and the changes in corneal sub-basal nerve plexus (SNP) and corneal dendritic cells (DCs).

Methods: 58 patients with type 2 diabetes mellitus (T2DM) and 30 age- and sex-matched healthy participants underwent assessment of the corneal nerve. The DR group was divided into no diabetic retinopathy (NDR) and 29 eyes with mild to moderate non-proliferative diabetic retinopathy (NPDR).

View Article and Find Full Text PDF

Background: Orthokeratology (OK) contact lenses are increasingly prescribed for myopia control but their impact on corneal epithelial immune cells (CEIC) is unclear. This study compares CEIC in OK wearers to soft contact lens (SCL) wearers and non-wearers.

Methods: In vivo confocal microscope images at the corneal central and mid-peripheral subbasal level were evaluated in 18 OK wearers, 18 SCL wearers and 18 non-wearers (mean age 27.

View Article and Find Full Text PDF

Investigation of potential toxic effects of nano- and microplastics on human endometrial stromal cells.

Reprod Toxicol

January 2025

Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea; Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.

Nanoplastics (NPs) and microplastics (MPs) have become a global concern in recent years. Most current research on the impact of plastics on obstetrics has focused on their accumulation in specific tissues in animal models and the disease-causing potential of MPs. However, there is a relative lack of research on the cellular changes caused by the accumulation of MPs.

View Article and Find Full Text PDF

Tissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!