Neurons in the central nucleus of the auditory midbrain inferior colliculus divide into four classes according to the shapes of their receptive fields. Neurons of two of these classes - sharply tuned, inhibition-dominated neurons of class II, and broadly tuned neurons of class III - show systematic gradients in their abundance on isofrequency contours. Sharp tuning is most prevalent in the center, broad tuning in the periphery of the ICC. This new map of tuning-curve shape adds to the six previously described maps of neural response properties on isofrequency contours of the ICC and stresses the fact that very different sensitivities and selectivities to sound properties are combined in local clusters of collicular neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.wnr.0000078545.07662.85DOI Listing

Publication Analysis

Top Keywords

inferior colliculus
8
neurons class
8
isofrequency contours
8
neurons
5
spatial map
4
map frequency
4
frequency tuning-curve
4
tuning-curve shapes
4
shapes mouse
4
mouse inferior
4

Similar Publications

The inferior colliculus is a key nucleus in the central auditory pathway, integrating acoustic stimuli from both cochleae and playing a crucial role in sound localization. It undergoes functional and structural development in childhood and experiences age-related degeneration later in life, contributing to the progression of age-related hearing loss. This study aims at finding out, whether the volume of the human inferior colliculus can be determined by analysis of routinely performed MRIs and whether there is any age-related variation.

View Article and Find Full Text PDF

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

The inferior colliculus (IC) is an important midbrain station of the auditory pathway, as well as an important hub of multisensory integration. The adult mammalian IC can be subdivided into three nuclei, with distinct cyto- and myeloarchitectonical profiles and distinct calcium binding proteins expression patterns. Despite several studies about its structural and functional development, the knowledge about the human fetal IC is rather limited.

View Article and Find Full Text PDF

Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing.

View Article and Find Full Text PDF

Neuroimaging model of visceral manipulation in awake rat.

J Neurosci

January 2025

The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA

Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!