Herein we present a computational technique for generating helix-membrane protein folds matching a predefined set of distance constraints, such as those obtained from NMR NOE, chemical cross-linking, dipolar EPR, and FRET experiments. The purpose of the technique is to provide initial structures for local conformational searches based on either energetic considerations or ad-hoc scoring criteria. In order to properly screen the conformational space, the technique generates an exhaustive list of conformations within a specified root-mean-square deviation (RMSD) where the helices are positioned in order to match the provided distances. Our results indicate that the number of structures decreases exponentially as the number of distances increases, and increases exponentially as the errors associated with the distances increases. We also found the number of solutions to be smaller when all the distances share one helix in common, compared to the case where the distances connect helices in a daisy-chain manner. We found that for 7 helices, at least 15 distances with errors up to 8 A are needed to produce a number of solutions that is not too large to be processed by local search refinement procedures. Finally, without energetic considerations, our enumeration technique retrieved the transmembrane domains of Bacteriorhodopsin (PDB entry1c3w), Halorhodopsin (1e12), Rhodopsin (1f88), Aquaporin-1 (1fqy), Glycerol uptake facilitator protein (1fx8), Sensory Rhodopsin (1jgj), and a subunit of Fumarate reductase flavoprotein (1qlaC) with Calpha level RMSDs of 3.0 A, 2.3 A, 3.2 A, 4.6 A, 6.0 A, 3.7 A, and 4.4 A, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323961 | PMC |
http://dx.doi.org/10.1110/ps.0305003 | DOI Listing |
Chem Sci
December 2024
ByteDance Research Bellevue Washington 98004 USA
A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges.
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Biotechnology and Key Laboratory of Industrial Biotechnology of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 China. Electronic address:
Achieving enzyme catalysis at high substrate concentrations is a substantial challenge in industrial biocatalysis, and the role of glycosylation in post-translational modifications that modulate enzyme substrate inhibition remains poorly understood. This study provides insights into the role of N-glycosylation in substrate inhibition by comparing the catalytic properties of d-lactonohydrolase (d-Lac) derived from Fusarium moniliforme expressed in prokaryotic and eukaryotic hosts. Experimental evidence indicates that recombinant d-Lac expressed in Pichia pastoris (PpLac-WT) exhibits higher hydrolysis rates at a substrate concentration of 400 g/L, with reduced substrate inhibition and enhanced stability compared to the recombinant d-Lac expressed in Escherichia coli (EcLac-WT).
View Article and Find Full Text PDFProteins
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
MPS1 kinase is a dual specificity kinase that plays an important role in the spindle assembly checkpoint mechanism during cell division. Overexpression of MPS1 kinase is reported in several cancers. However, drug discovery and development efforts targeting MPS1 kinase did not result in any clinically successful candidates.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
A novel coordination compound, [Co()(HO)], was synthesized from aqueous solutions of Co(NO) and the ligand 2-[(5-methyl-1,3,4-thia-diazol-2-yl)sulfan-yl]acetic acid (H, CHNOS). In the monoclinic crystals (space group 2/), the cobalt(II) ion is located about a centre of symmetry and is octa-hedrally coordinated by two anions in a monodentate fashion through carboxyl O atoms and by four water mol-ecules. A relatively strong hydrogen bond between one of the water mol-ecules and the non-coordinating carboxyl-ate O atom consolidates the conformation.
View Article and Find Full Text PDFPLoS One
January 2025
Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan.
Breast cancer remains a significant challenge in oncology, highlighting the need for alternative therapeutic strategies that target necroptosis to overcome resistance to conventional therapies. Recent investigations into natural compounds have identified 8,12-dimethoxysanguinarine (SG-A) from Eomecon chionantha as a potential necroptosis inducer. This study presents the first computational exploration of SG-A interactions with key necroptotic proteins-RIPK1, RIPK3, and MLKL-through molecular docking, molecular dynamics (MD), density functional theory (DFT), and molecular electrostatic potential (MEP) analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!