In summer, the honeybee (Apis mellifera) worker population consists of two temporal castes, a hive bee group performing a multitude of tasks including nursing inside the nest, and a forager group specialized on collecting nectar, pollen, water and propolis. Elucidation of the regulatory mechanisms responsible for the hive bee to forager transition holds a prominent position within present day sociobiology. Here we suggest a new explanation dubbed the "double repressor hypothesis" aimed to account for the substantial amount of empirical data in this field. This is the first time where both the regular transition and starvation-induced precocious transition are explained within the same regulatory framework. We suggest that the transition is under regulatory control by an internal and an external repressor of the allatoregulatory central nervous system, where these two repressors modulate a positive regulatory feedback loop involving juvenile hormone (JH) and the lipoprotein vitellogenin. The concepts of age-neutrality, fixed and variable response thresholds and reinforcement are integral parts of our explanation, and in addition they are given explicit physiological content. The hypothesis is represented by a differential equations model at the level of the individual bee, and by a discrete individual-based colony model. The two models generate predictions in accordance with empirical data concerning the cumulative probability of becoming a forager, mean age at onset of foraging, reversal of foragers, time window of reversal, relationship between JH titre and onset of foraging, relative representations of genotypic groups, and effects of forager depletion and confinement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-5193(03)00121-8 | DOI Listing |
Parasit Vectors
January 2025
Department of Biology, University of Padova, Padova, Italy.
Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.
View Article and Find Full Text PDFInsects
January 2025
Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
To date, no study has been conducted to investigate the diversity in honeybee populations of in the Czech Republic. Between 2022 and 2023, worker bees were collected from colonies distributed throughout the Czech Republic in 77 districts, and their genetic differences were examined using 22 microsatellite loci. The samples were obtained from hives ( = 3647) and through the process of capture on flowers ( = 553).
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
Molecular Physiology and Toxicology Laboratory, Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
European honey bee (Apis mellifera) colonies are an ideal host to the invasive beetle Aethina tumida, providing a nutrient rich environment that is protected from the elements and facilitates beetle reproduction. Although various management techniques and chemical treatments for A. tumida have been developed, understanding the efficacy of these treatments and techniques is limited.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom.
Pressures on honey bee health have substantially increased both colony mortality and beekeepers' costs for hive management across Europe. Although technological advances could offer cost-effective solutions to these challenges, there is little research into the incentives and barriers to technological adoption by beekeepers in Europe. Our study is the first to investigate beekeepers' willingness to adopt the Bee Health Card, a molecular diagnostic tool developed within the PoshBee EU project which can rapidly assess bee health by monitoring molecular changes in bees.
View Article and Find Full Text PDFFoods
December 2024
Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy.
Honey, a natural food with a rich history, is produced by honeybees and other species of bees from nectar, other plant fluids, and honeydew of sap-sucking insects. During foraging, these bees may be exposed to plant protection products (PPPs), metals, and metalloids, potentially leading to residues in honey and hive products that could have a negative impact on human safety. Recognizing the lack of an appropriate methodology for pesticide contamination of honey and other hive products, this research aims to support the need for studies on residues in pollen and bee products for human consumption to establish safe maximum residue levels (MRLs) for consumers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!