The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x xH2O were examined using macroscopic and spectroscopic techniques. Constant solid:solution isotherms were constructed from batch sorption experiments and sorption kinetics assessed at pH 7. X-ray absorption near edge spectroscopy (XANES) was employed to elucidate the solid-state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x xH2O showed a high affinity for As regardless of the initial As species present. Sorption was higher at all pH values when the initial As species was As(III). Oxidation of As(III) (250 mg/L solution) to As(V) was virtually complete (98-100%) within 5 s. XANES results showed the presence of only As(V) on the RuO2 x xH2O regardless of the initial As oxidation state. There was no change in the As oxidation state on the solid phase for 4 weeks in both oxic and anoxic environments. It is speculated that changes in the RuO2 x xH2O structure, due to oxidation reactions, caused the higher total As sorption capacity when As(III) was the initial species. The As sorption capacity of RuO2 x xH2O is greater than that of other metal oxides reviewed in this study. The ability of RuO2 x xH2O to rapidly oxidize As(III) is much greater than other oxides, such as MnO2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es026423d | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, Department of Chemistry, CHINA.
Ruthenium dioxide (RuO2) is a benchmark electrocatalyst for proton exchange membrane water electrolyzers (PEMWE), but its stability during the oxygen evolution reaction (OER) is often compromised by lattice oxygen involvement and metal dissolution. Despite that the typical synthesis of RuO2 produces chloride residues, the underlying function of chloride have not well investigated. In this study, we synthesized chlorine-containing RuO2 (RuO2-Cl) and pure RuO2 catalysts with similar morphology and crystallinity.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Electrolysis of seawater for hydrogen (H) production to harvest clean energy is an appealing approach. In this context, there is an urgent need for catalysts with high activity and durability. RuO electrocatalysts have shown efficient activity in the hydrogen and oxygen evolution reactions (HER and OER), but they still suffer from poor stability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
Electrocatalytic urea synthesis from carbon dioxide (CO) and nitrate (NO ) offers a promising alternative to traditional industrial methods. However, current catalysts face limitations in the supplies of CO* and N* intermediates, and their coupling, resulting in unsatisfactory urea production efficiency and energy consumption. To overcome these challenges, we carried out tandem electrosynthesis approach using ruthenium dioxide-supported palladium-gold alloys (PdAu/RuO).
View Article and Find Full Text PDFNat Commun
January 2025
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China.
Ruthenium dioxide has attracted extensive attention as a promising catalyst for oxygen evolution reaction in acid. However, the over-oxidation of RuO into soluble HRuO species results in a poor durability, which hinders the practical application of RuO in proton exchange membrane water electrolysis. Here, we report a confinement strategy by enriching a high local concentration of in-situ formed HRuO species, which can effectively suppress the RuO degradation by shifting the redox equilibrium away from the RuO over-oxidation, greatly boosting its durability during acidic oxygen evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!