In 1993, Malawi stopped treating patients with chloroquine for Plasmodium falciparum malaria because of a high treatment failure rate (58%). In 1998, the in vitro resistance rate to chloroquine was 3% in the Salima District of Malawi; in 2000, the in vivo resistance rate was 9%. We assayed two genetic mutations implicated in chloroquine resistance (N86Y in the P. falciparum multiple drug resistance gene 1 and K76T in the P. falciparum chloroquine resistance transporter gene) in 82 P. falciparum isolates collected during studies in 1998 and 2000. The prevalence of N86Y remained similar to that in neighboring African countries that continued to use chloroquine. In contrast, the prevalence of K76T was substantially lower than in neighboring countries, decreasing significantly from 17% in 1998 to 2% in 2000 (P < 0.02). However, neither mutation was significantly associated with in vivo or in vitro resistance (P > 0.29). Withdrawal of the use of chloroquine appears to have resulted in the recovery of chloroquine efficacy and a reduction in the prevalence of K76T. However, other polymorphisms are also expected to contribute to resistance.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, and Laboratory of Zoonotic Diseases, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen Campus, Shenzhen 518107, China. Electronic address:
Toxoplasma gondii is an intracellular and parasitic protozoon that harbors specialized cellular structures and molecular mechanisms, including the Plant-like Vacuolar Compartment (PLVAC). The PLVAC performs multifaceted roles in the parasite, contributing to ion homeostasis, proteolysis, pH regulation, and autophagy. Despite significant efforts over the past decade to characterize the PLVAC, the proteins localized to this organelle remain largely unidentified.
View Article and Find Full Text PDFMolecules
January 2025
Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 extracts, identifying the top seven candidates, including (50% ethanol and 100% methanol extract), , (hot water and 50% ethanol extract), , and . Among these, was identified as the top priority for further analysis due to its high antimalarial activity and high yield of bioactive compounds.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
Cisplatin (CDDP) remains a key drug for patients with advanced bladder cancer (BC), despite the emergence of new therapeutic agents; thus, the identification of factors contributing to CDDP treatment resistance is crucial. As acidity of the tumor microenvironment has been reported to be associated with treatment resistance and poor prognosis across various cancer types, our objectives in this study were to investigate the effects of an acidic environment on BC cells and elucidate the mechanisms behind CDDP resistance. Our findings show that BC cells cultured under acidic conditions developed cisplatin resistance as acidity increased.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.
Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.
Objective: To assess the proportion of P.
Biochem Genet
January 2025
Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China.
Drug resistance resulting from mutations in Plasmodium falciparum, that caused the failure of previously effective malaria drugs, has continued to threaten the global malaria elimination goal. This study describes the profiles of P. falciparum chloroquine resistance transporter (Pfcrt) and P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!