The 25-kb linear plasmid lp25 and one of the 28-kb linear plasmids (lp28-1) are required for experimental infection in Borrelia burgdorferi, the etiologic agent of Lyme disease. The loss of these plasmids either eliminates infectivity (lp25) or significantly increases the 50% infective dose during a 2-week infection period (lp28-1). This study assessed the kinetics of bacterial dissemination in C3H/HeN mice infected with B. burgdorferi lacking either lp25 or lp28-1, as well as their wild-type parent, and tracked the development of specific borrelial antibodies over a 3-week period. The results indicated that the wild type and the lp28-1(-) strains were able to disseminate throughout the host, whereas the lp25(-) strain was cleared within 48 h of inoculation. While the wild-type B. burgdorferi persisted in tissues for the duration of the study, the lp28-1(-) mutant began clearing at day 8, with no detectable bacteria present by day 18. As expected, the wild-type strain persisted in C3H/HeN mice despite a strong humoral response; however, the lp28-1(-) mutant was cleared coincidently with the development of a modest immunoglobulin M response. The lp28-1(-) mutant was able to disseminate and persist in C3H-scid mice at a level indistinguishable from that of wild-type cells, confirming that acquired immunity was required for clearance in C3H/HeN mice. Thus, within an immunocompetent host, lp28-1-encoded proteins are not required for dissemination but are essential for persistence associated with Lyme borreliosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166013 | PMC |
http://dx.doi.org/10.1128/IAI.71.8.4608-4613.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!