Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Osteogenic properties of the dura and periosteum are thought to contribute to the regenerative capacity of membranous bone tissue. The purpose of this investigation was to elucidate (1) whether dura without underlying neural tissues can induce osteogenesis, (2) to what extent the periosteum participates in membranous bone healing, and (3) the difference between dura-induced and periosteum-induced osteogenesis.
Methods: A standardized 2-mm defect was created within the middle portion of each zygomatic arch in 30 Wistar albino rats. The rats were divided into 3 groups, 10 animals in each group. In group 1, the periosteum was removed and neonatal dura grafts were transplanted onto the zygomatic arch bone defect circumferentially. In group 2, the overlying periosteum was preserved. In group 3, the periosteum was removed. At 3 and 10 weeks, animals from each group were killed, and specimens were obtained. Data were collected from the 3-dimensional computed tomographic scans and histologic studies to compare the extent of bony repair.
Results: Fracture sites demonstrated osteogenesis associated with chondrogenesis in groups 1 and 2 and only limited osteogenesis with no chondrogenesis in group 3. In some animals in group 3, cortical bone ends underwent resorption. In groups 1 and 2, bone defects were obliterated by the formation of the mature compact bone at 10 weeks postoperatively. The difference between bone regeneration in these groups was not significant (P =.16). In group 3, the defects failed to heal by bony union, and in most of the samples the fibrous union was observed instead. The difference between groups 1 and 3 was significant (P =.03). The difference between groups 2 and 3 was not significant (P =.09).
Conclusions: The trend toward significance is in agreement with the current clinical practice of preserving periosteum in the manipulations of the membranous bone defects. Newborn dura can exert a potentiating effect on osteogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archfaci.5.4.301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!