An inhibitor affinity chromatography (IAC) method has been developed for the analysis of inhibitor-protein interactions as a complementary approach to two-dimensional electrophoresis for functional proteomics studies. The procedure was developed utilizing a cyclin-dependent kinase 2 (Cdk2) inhibitor coupled to a polymeric resin and validated using a number of proteins interacting with the inhibitor with different specificities. Cdk2 and the other kinases bound and eluted from the resin in accordance with the relative in vitro potency of the inhibitor for each enzyme. Molecular interactions with the Cdk2 inhibitor were compared for HCT116 cancer cells versus rat pancreatic acinar cells. Proteins interacting with the ligand on the IAC matrix were identified by mass spectrometry. Isothermal calorimetry was used to confirm and quantitatively evaluate the binding affinity of some of the interacting proteins. Heat-shock protein (Hsp) 70 and Hsp27 were the strongest interactors with the inhibitor, displaying binding affinities comparable to those of Cdk2. These results support the use of IAC as a general method for the rapid identification and qualitative evaluation of the in vivo targets and potential side effects of a given drug.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200300431DOI Listing

Publication Analysis

Top Keywords

inhibitor affinity
8
affinity chromatography
8
cdk2 inhibitor
8
proteins interacting
8
inhibitor
7
chromatography profiling
4
profiling specific
4
specific reactivity
4
reactivity proteome
4
proteome immobilized
4

Similar Publications

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported from Wuhan, China, there has been a surge in scientific research to find a permanent cure for the disease. The main challenge in effective drug discovery is the continuously mutating nature of the SARS-CoV-2 virus. Thus, we have used the I-TASSER modeling to predict the structure of the SARS-CoV-2 viral envelope protein followed by combinatorial computational assessment to predict its putative potential small molecule inhibitors.

View Article and Find Full Text PDF

Background: Cathepsin-L (FhCL) is a group of enzymes that most flukes express and secreted significantly in parasite-host interactions. Researches are focusing on antigens released by as one of the keys to understanding immunologic pathways in parasite infection and targets for anthelmintics. Efforts to suppress FhCL function through vaccination or therapy using anthelmintic drugs are key factors in controlling field-level trematode infections.

View Article and Find Full Text PDF

Background: Snake venoms are mainly composed of a mixture of proteins and peptides with antiviral activity against several viruses including HIV. Therefore, snake venoms represent a promising source for new antiviral drugs.

Aim: The study examines the toxin's capacity to disrupt the spike glycoprotein of HIV, the virus accountable for the HIV epidemic.

View Article and Find Full Text PDF

Screening and identification of vascular endothelial cell targeting peptide in gastric cancer through novel integrated in vitro and in vivo strategy.

BMC Cancer

December 2024

Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, P.R. China.

Purpose: Antiangiogenesis therapy has become a hot field in cancer research. Given that tumor blood vessels often express specific markers related to angiogenesis, the study of these heterogeneous molecules in different tumor vessels holds promise for advancing anti-angiogenic therapy. Previously using phage display technology, we identified a targeting peptide named GX1 homing to gastric cancer vessels for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!