Engineering tolerance and accumulation of lead and cadmium in transgenic plants.

Nat Biotechnol

National Research Laboratory for Phytoremediation, Division of Molecular Life Sciences, Pohang, 790-784, Korea.

Published: August 2003

We have studied the utility of the yeast protein YCF1, which detoxifies cadmium by transporting it into vacuoles, for the remediation of lead and cadmium contamination. We found that the yeast YCF1-deletion mutant DTY167 was hypersensitive to Pb(II) as compared with wild-type yeast. DTY167 cells overexpressing YCF1 were more resistant to Pb(II) and Cd(II) than were wild-type cells, and accumulated more lead and cadmium. Analysis of transgenic Arabidopsis thaliana plants overexpressing YCF1 showed that YCF1 is functionally active and that the plants have enhanced tolerance of Pb(II) and Cd(II) and accumulated greater amounts of these metals. These results suggest that transgenic plants expressing YCF1 may be useful for phytoremediation of lead and cadmium.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nbt850DOI Listing

Publication Analysis

Top Keywords

lead cadmium
16
transgenic plants
8
overexpressing ycf1
8
pbii cdii
8
cadmium
5
ycf1
5
engineering tolerance
4
tolerance accumulation
4
lead
4
accumulation lead
4

Similar Publications

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.

View Article and Find Full Text PDF

This study aims to investigate the influence of cadmium (Cd) speciation transformation on P-wave velocity under different soil moisture conditions, providing critical insights into the subsurface characteristics of contaminated soils. Taking Cd-contaminated soil as the research subject, P-wave velocity and the speciation distribution of Cd in soils with different moisture contents and Cd adsorption levels were measured. The results reveal that when the soil is contaminated by Cd, the porosity is altered and it eventually lead to change P-wave velocity.

View Article and Find Full Text PDF

Increased application of organic fertilizer is an effective measure to improve greenhouse soil quality. However, prolonged and intensive application of organic manure has caused nutrient and certain heavy metal accumulation in greenhouse soil. Therefore, the optimal quantity of organic manure required to sustain soil fertility while mitigating the accumulation of heavy metals and other nutrients resulting from continuous application remains unclear.

View Article and Find Full Text PDF

The residual concentration of pesticides and heavy metals (arsenic, mercury, selenium, lead, cadmium, and aluminum) was measured in the soil and the cattle egret (Bubulcus ibis) liver from two localities at Sharkia Governorate, Egypt. The pesticide residues have taken the following pattern: chlorpyrifos > metalaxyl > piperonyl butoxide > thiophanate-methyl, in the soil. The residual concentration of pesticides was greater in the soil at Kafr El-Ashraf village (agricultural site) than at El-Qanayat city (garbage site) during the summer season of 2021 compared with the winter season of 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!