Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are not normally expressed by epithelial cells lining the colon but are aberrantly expressed in cancer, where they act as morphogens and regulate tumor cell differentiation. Studies of colon cancer formation in mice genetically incapable of synthesizing GRP-R suggested that this receptor's morphogenic properties were mediated via focal adhesion kinase (FAK). We therefore set out to determine the presence of both total and phosphorylated forms of FAK in human colon cancer specimens as a function of tumor cell differentiation and GRP/GRP-R co-expression. Ten colon cancers containing 25 regions of distinct differentiation were randomly selected from our GI Cancer Tumor Bank. All specimens were immunohistochemically probed using antibodies recognizing GRP, GRP-R, total FAK, and FAK specifically phosphorylated at tyrosine (Y) 397, 407, 576, 577, 861, and 925. Antibody-specific chromogen was determined by quantitative immunohistochemistry (IHC) for each region of defined differentiation. Here we confirm that GRP/GRP-R co-expression is a function of differentiation, with highest levels observed in well-differentiated tumor cells. We also show that the amount of total FAK and of FAK phosphorylated at Y397 and Y407 tightly correlates with differentiation and with the amount of GRP/GRP-R co-expression. These findings are consistent with GRP/GRP-R acting as a morphogen by activating FAK, and suggest that this occurs via phosphorylation of this enzyme at two specific tyrosine residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/002215540305100807 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!