AI Article Synopsis

Article Abstract

A number of different kinases have been implicated in NF-kappa B regulation and survival function. Here we investigated the molecular cross-talk between glycogen synthase kinase-3 beta (GSK-3 beta) and the p105 precursor of the NF-kappa B p50 subunit. GSK-3 beta forms an in vivo complex with and specifically phosphorylates NF-kappa B1/p105 at Ser-903 and Ser-907 in vitro. In addition, the p105 phosphorylation level is reduced in fibroblasts lacking GSK-3 beta as compared with wild-type cells. GSK-3 beta has a dual effect on p105: it stabilizes p105 under resting conditions and primes p105 for degradation upon tumor necrosis factor (TNF)-alpha treatment. Indeed, constitutive processing of p105 to p50 occurs at a higher rate in cells lacking GSK-3 beta with respect to wild-type cells and can be reduced upon reintroduction of GSK-3 beta by transfection. Moreover, p105 degradation in response to TNF-alpha is prevented in GSK-3 beta-/- fibroblasts and by a Ser to Ala point mutation on p105 at positions 903 or 907. Interestingly, the increased sensitiveness to TNF-alpha-induced death occurring in GSK-3 beta-/- fibroblasts, which is coupled to a perturbation of p50/105 ratio, can be reproduced by p105 silencing in wild-type fibroblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M305676200DOI Listing

Publication Analysis

Top Keywords

gsk-3 beta
24
p105
9
glycogen synthase
8
synthase kinase-3
8
beta
8
kinase-3 beta
8
nf-kappa b1/p105
8
gsk-3
8
lacking gsk-3
8
wild-type cells
8

Similar Publications

Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.

View Article and Find Full Text PDF

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.

View Article and Find Full Text PDF

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!