A nonlinear quantitative structure-anti-HIV-1-activity relationship (QSAR) study was investigated in a series of 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine] (HEPT) derivatives acting as nonnucleoside reverse transcriptase inhibitors (NNRTIs). This QSAR study has been undertaken by a three-layered neural network (NN) using molecular descriptors known to be responsible for the anti-HIV-1 activity. The usefulness of the model and the nonlinearity of the relationship between molecular descriptors and anti-HIV-1 activity have been clearly demonstrated. The obtained model outperforms those given in the literature in both the fitting and predictive stages. NN analysis yielded predicted activities in excellent agreement with the experimentally obtained values (R(2) = 0.977, predictive r(2) = 0.862). The effect of each molecular feature on the anti-HIV-1 activity variation has been clearly elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci034047qDOI Listing

Publication Analysis

Top Keywords

anti-hiv-1 activity
12
hept derivatives
8
qsar study
8
molecular descriptors
8
neural networks
4
networks accurate
4
accurate nonlinear
4
nonlinear qsar
4
qsar model
4
model hept
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!