A new application of TOPological Sub-structural MOlecular DEsign (TOPS-MODE) was carried out in herbicides using computer-aided molecular design. Two series of compounds, one containing herbicide and the other containing nonherbicide compounds, were processed by a k-Means Cluster Analysis in order to design the training and prediction sets. A linear classification function to discriminate the herbicides from the nonherbicide compounds was developed. The model correctly and clearly classified 88% of active and 94% of inactive compounds in the training set. More specifically, the model showed a good global classification of 91%, i.e., (168 cases out of 185). While in the prediction set, they showed an overall predictability of 91% and 92% for active and inactive compounds, being the global percentage of good classification of 92%. To assess the range of model applicability, a virtual screening of structurally heterogeneous series of herbicidal compounds was carried out. Two hundred eighty-four out of 332 were correctly classified (86%). Furthermore this paper describes a fragment analysis in order to determine the contribution of several fragments toward herbicidal property; also the present of halogens in the selected fragments were analyzed. It seems that the present TOPS-MODE based QSAR is the first alternate general "in silico" technique to experimentation in herbicides discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci034039+ | DOI Listing |
SAR QSAR Environ Res
July 2020
Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China.
Quantitative structure-property relationship (QSPR) models were developed for predicting the pungency of a set of capsaicinoids. Multiple linear regression (MLR) coupled with topological substructural molecular descriptor (TOPS-MODE) approach was used. The best MLR model based on only five orthogonalized TOPS-MODE variables allowed us to obtain a coefficient of determination of 0.
View Article and Find Full Text PDFSensors (Basel)
July 2019
IREA-National Research Council of Italy (CNR) via Diocleziano 328, 80124 Napoli, Italy.
We present a new solution for the phase-preserving focusing of synthetic aperture radar (SAR) raw data acquired through the Terrain Observation with Progressive Scan (TOPS) mode. The proposed algorithm consists of a first interpolation stage of the TOPS raw data, which takes into account the Doppler Centroid frequency variations due to the azimuth antenna steering function, and allows us to unfold the azimuth spectra of the TOPS raw data. Subsequently, the interpolated signals are processed by using conventional phase-preserving SAR focusing methods that exploit frequency domain and spectral analyses algorithms, which are extensively used to efficiently process Stripmap and ScanSAR data.
View Article and Find Full Text PDFSensors (Basel)
December 2016
Electronic and Electronic Engineering Department, University of Sheffield, Sheffield S1-3JD, UK.
Based on the terrain observation by progressive scans (TOPS) mode, an efficient full-aperture image formation algorithm for focusing wide-swath spaceborne TOPS data is proposed. First, to overcome the Doppler frequency spectrum aliasing caused by azimuth antenna steering, the range-independent derotation operation is adopted, and the signal properties after derotation are derived in detail. Then, the azimuth deramp operation is performed to resolve image folding in azimuth.
View Article and Find Full Text PDFSensors (Basel)
July 2016
School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging.
View Article and Find Full Text PDFMol Divers
February 2016
CIQ, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
Adenosine regulates tissue function by activating four G-protein-coupled adenosine receptors (ARs). Selective agonists and antagonists for A3 ARs have been investigated for the treatment of a variety of immune disorders, cancer, brain, and heart ischemic conditions. We herein present a QSAR study based on a Topological sub-structural molecular design (TOPS-MODE) approach, intended to predict the A3 ARs of a diverse dataset of 124 (94 training set/ 30 prediction set) adenosine derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!