Growth kinetics and cell morphology of Listeria monocytogenes Scott A as affected by temperature, NaCl, and EDTA.

J Food Prot

Microbial Food Safety Research Unit, Eastern Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.

Published: July 2003

AI Article Synopsis

Article Abstract

Growth kinetics and morphological characteristics of Listeria monocytogenes Scott A grown under stress conditions induced by increasing levels of NaCl and EDTA were studied as a function of temperature. L. monocytogenes Scott A was inoculated into brain heart infusion broth (pH 6) at 19, 28, 37, and 42 degrees C. Test cultures contained NaCl (at concentrations of 4.5, 6.0, and 7.5%) or EDTA (at concentrations of 0.1, 0.2, and 0.3 mM); control cultures contained 0.5% NaCl. Growth curves were fitted from plate count data by the Gompertz equation, and growth kinetics parameters were derived. Stationary-phase cells were examined by scanning and transmission electron microscopy. Generation times (GTs) and lag phase duration times (LPDs) increased as additive levels were increased. The bacterium grew at all NaCl levels. At 37 and 42 degrees C, growth was slow in media containing 7.5% NaCl, and no growth occurred in media containing 0.3 mM EDTA. Temperature was a major factor in certain stress conditions that led to cell elongation and loss of flagella. Cells in control media at 28 degrees C grew as short rods (0.5 by 1.0 to 2.0 microm), while at 42 degrees C most cells were 4 to 10 times as long. Higher levels of NaCl at higher temperatures resulted in longer and thicker cells. At 28 degrees C, 0.1 mM EDTA had little effect on growth kinetics and morphology; however, 0.3 mM EDTA caused a sixfold increase in GT and LPD and loss of flagellae, with most cells being two to six times as long as normal. Cell length did not correlate with growth kinetics. The results of this study suggest that the effect of altered morphological characteristics of L. monocytogenes cells grown under stress on the virulence and subsequent survival of these cells should be investigated.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-66.7.1208DOI Listing

Publication Analysis

Top Keywords

growth kinetics
20
monocytogenes scott
12
growth
8
listeria monocytogenes
8
nacl edta
8
edta growth
8
morphological characteristics
8
grown stress
8
stress conditions
8
levels nacl
8

Similar Publications

Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.

View Article and Find Full Text PDF

The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.

View Article and Find Full Text PDF

Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.

View Article and Find Full Text PDF

The persistent Na current (I) is thought to play important roles in many brain regions including the generation of inspiration in the ventral respiratory column (VRC) of mammals. The characterization of the slow inactivation of I requires long-lasting voltage steps (>1 s), which will increase intracellular Na and activate the Na/K-ATPase pump current (I). Thus, I may contribute to the previously measured slow inactivation of I and the generation of the inspiratory bursting rhythm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!