Using the facultative root hemiparasite Rhinanthus minor and its host Hordeum vulgare several aspects of water relations have been measured in this parasitic association. Extraction of xylem sap by the parasite from the host's roots is facilitated by con siderably higher transpiration per leaf area in the parasite than in the host and by the fact that stomata of attached Rhinanthus were open all day and night despite extremely high ABA concentrations in the leaves. By comparison, another root hemiparasite, Melampyrum arvense, parasitizing various grasses in the field, showed normal diurnal stomatal behaviour. The abnormal behaviour of Rhinanthus stomata was not due to anatomical reasons as closure could be induced by applying high external ABA concentrations. Remarkable differences have been detected between the hydraulic conductance of barley seminal roots showing relatively low values and that of Rhinanthus seminal roots showing very high values. The latter could be related to the observed high ABA concentrations in these roots. Whole plant water uptake, transpirational losses, growth-dependent deposition, and the flows of water within the plants have been measured in singly growing Rhinanthus and Hordeum plants and in the parasitic association between the two. Water uptake, deposition and transpiration in Rhinanthus were dramatically increased after attachment to the barley host; most of the water used by the parasite was extracted as xylem sap from the host, thereby scavenging 20% of the total water taken up by the host's roots. This water uptake by the parasitized host, however, due to a parasite-induced reduction in the host's growth, was decreased by 22% as compared to non-parasitized barley. The overall changes in growth-related water deposition in the host and parasite pointed to decreased shoot growth and relatively favoured root growth in the host and to strongly favoured shoot growth in the parasite. These changes in the host became more severe, when more than one Rhinanthus was parasitizing one barley plant.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erg212DOI Listing

Publication Analysis

Top Keywords

parasitic association
12
aba concentrations
12
water uptake
12
water
9
rhinanthus
8
root hemiparasite
8
host
8
xylem sap
8
host's roots
8
high aba
8

Similar Publications

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative Leishmaniasis therapy.

Microb Pathog

January 2025

Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:

Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!