Testing for flatness of an optical parallel plate in a Fizeau interferometer suffers from problems caused by multiple-beam interference noise. Each internal-reflection component can be separated from the signal by its modulation frequency in a wavelength-scanned interferometer; however, the frequency depends on the thickness and the refractive-index dispersion of the test plate and on the nonlinearity of the scanning source. With a new 19-sample wavelength-scanning algorithm we demonstrate the elimination of the reflection noise, the effect of the dispersion up to the second order of the reflectance of the test plate, and as the nonlinearity of the source. The algorithm permits large tolerance in the air-gap distance, thus making it somewhat independent of the thickness of the test plate. The minimum residual reflection noise with this algorithm for testing a glass plate is approximately lambda/600. Experimental results show that the front surface of the test plate was measured within 1 nm rms of its true shape over a 230-mm-diameter aperture.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.42.003888DOI Listing

Publication Analysis

Top Keywords

test plate
16
parallel plate
8
refractive-index dispersion
8
plate nonlinearity
8
reflection noise
8
plate
7
wavelength-scanning interferometry
4
interferometry transparent
4
transparent parallel
4
plate refractive-index
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!