The fucosyltransferase gene family encodes enzymes that transfer fucose in alpha 1,2, alpha 1,3/4 and alpha 1,6 linkages on a large variety of glycans. The most ancient genes harbour a split coding sequence, and encode enzyme that transfer fucose at or near O- and N-peptidic sites (serine, threonine or chitobiose unit). Conversely, the more recent genes have a monoexonic coding sequence, and encode enzymes that transfer fucose at the glycan periphery. All basic mechanisms of gene evolution contribute to this amazing scenario: exon shuffling, transposition, point mutations, and duplication. As typical examples: (i) exon shuffling leads to the ancestral organization of the alpha 1,6 fucosyltransferase gene; (ii) the ancestor of alpha 1,2 fucosyltransferase genes is reshaped by retrotransposition at the same locus; (iii) duplication associated to point mutations leads to the most recent alpha 1,3/4 fucosyltransferase genes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fucosyltransferase gene
12
transfer fucose
12
gene family
8
mechanisms gene
8
gene evolution
8
enzymes transfer
8
alpha 13/4
8
coding sequence
8
sequence encode
8
exon shuffling
8

Similar Publications

Associations between ABO, FUT2 and chronic pancreatitis: A comprehensive meta-analysis of multiple cohorts and public biobanks.

Pancreatology

December 2024

Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Changhai Hospital, Naval Medical University, Shanghai, 200433, China. Electronic address:

Objectives: Associations of ABO blood group specifying transferases A/B (ABO) and fucosyltransferase 2 (FUT2) with CP remain inconclusive. We aimed to comprehensively investigate the associations by Chinese sequencing cohorts and external cohorts.

Methods: First, we analyzed the distributions of ABO blood groups and FUT2 status, along with lead single nucleotide polymorphisms (SNPs) at ABO (rs8176693 C/T) and FUT2 (rs632111 A/G) gene loci in Chinese low-coverage whole-genome sequencing discovery cohort.

View Article and Find Full Text PDF

Fucosyltransferase 4 upregulates P-gp expression for chemoresistance via NF-κB signaling pathway.

Biochim Biophys Acta Gen Subj

December 2024

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Article Synopsis
  • Multidrug resistance (MDR) complicates the development of effective chemotherapy, with previous research showing that GnT-III expression decreases chemoresistance and that fucosylation is heightened in resistant cell models.
  • Using advanced techniques like CRISPR/Cas9, this study created a FUT4 knockout cell line to assess how fucosylation affects drug resistance by analyzing various gene expressions and drug response.
  • The findings revealed that knocking out FUT4 lowered P-glycoprotein levels and enhanced drug sensitivity, indicating that FUT4 plays a pivotal role in regulating P-glycoprotein expression through the NF-κB signaling pathway, positioning it as a potential target for overcoming MDR in cancer treatment.
View Article and Find Full Text PDF

Regulation of Metabolic Pathways to Enhance Difucosyllactose Biosynthesis in .

J Agric Food Chem

December 2024

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Difucosyllactose (DFL), an important kind of fucosylated human milk oligosaccharides (HMOs), has garnered considerable attention due to its excellent physiological activities in infants. Previously, we achieved biosynthesis of DFL; however, substantial residual intermediates of fucosyllactoses (FL) were detected. In this study, DFL biosynthesis was optimized, and residual FL were reduced by regulating metabolic pathways.

View Article and Find Full Text PDF

Inflammatory bowel disease is associated with several genetic risk loci. Loss-of-function mutation in the α1,2-fucosyltransferase (fut2) gene, which alters fucosylation on the surface of intestinal epithelial cells, is one example. However, whether bacterial fucosylation can contribute to gut inflammation is unclear.

View Article and Find Full Text PDF

Personalized nutrition and precision medicine in perimenopausal women: A minireview of genetic polymorphisms COMT, FUT2, and MTHFR.

Clinics (Sao Paulo)

December 2024

Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil; Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Botânio Pesquisa e Desenvolvimento Ltda, São Paulo, SP 05545010, Brazil. Electronic address:

This mini-review explores the potential of precision medicine and personalized nutrition in addressing health challenges faced by perimenopausal women, focusing on the role of genetic polymorphisms in key metabolic pathways. Specifically focus on the single nucleotide polymorphisms (SNPs) in the COMT, FUT2, and MTHFR genes, which influence neurotransmitter metabolism, gut microbiota composition, and folate homeostasis, respectively. These polymorphisms are critical in modulating hormonal fluctuations, metabolic imbalances, and nutrient absorption during perimenopause.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!