Betalains are natural pigments recently considered as compounds with potential antioxidative properties. In this work, ex vivo plasma spiking of pure either betanin or indicaxanthin, followed by isolation of low density lipoprotein (LDL), and measurement of its resistance to copper-induced oxidation, has been used to research if these betalains can bind to LDL and prevent oxidation of LDL lipids. When pooled human plasma from 10 healthy volunteers was incubated in the presence of 25-100 microM either betanin or indicaxanthin, incorporation of both compounds in LDL was observed, with a maximum binding of 0.52 +/- 0.08, and 0.51 +/- 0.06 nmoles of indicaxanthin and betanin, respectively, per mg LDL protein. Indicaxanthin-enriched and betanin-enriched LDL were more resistant than homologous native LDL to copper-induced oxidation, as assessed by the elongation of the induction period. The incorporated indicaxanthin, however, appeared twice as effective as betanin in increasing the length of the lag phase, while both compounds did not affect the propagation rate. Both betalains were consumed during the inhibition period of lipid oxidation, and delayed consumption of LDL-beta carotene. Indicaxanthin, but not betanin, prevented vitamin E consumption at the beginning of LDL oxidation, and prolonged the time of its utilization. The resistance of LDL to oxidation when vitamin E and indicaxanthin acted separately in a sequence, was lower than that measured when they were allowed to act in combination, indicating some synergistic interaction between the two molecules. No prooxidant effect over a large concentration range of either betanin or indicaxanthin was observed, when either betalain was added to the LDL system undergoing a copper-induced oxidation. These results show than indicaxanthin and betanin may bind to LDL, and are highly effective in preventing copper-induced lipid oxidation. Interaction with vitamin E appears to add a remarkable potential to indicaxanthin in the protection of LDL. Although molecular mechanisms remain uncompletely understood, various aspects of the action of betanin and indicaxanthin in preventing LDL lipid oxidation are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1071576031000097490 | DOI Listing |
Plants (Basel)
August 2023
LAQV@REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
Adapting our food production chain and increasing the flora and fauna's livelihood in climate change-affected areas using is not only theoretical but already exists in practice in many places. This cactus grows in unsuitable soil for most species as it is adapted to arid and semi-arid soils and hot weather. In these regions, protects from erosion and contributes to soil health.
View Article and Find Full Text PDFMol Nutr Food Res
August 2023
School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK.
Scope: Betalain pigments are increasingly highlighted for their bioactive and anti-inflammatory properties, although research is lacking to demonstrate contributions of individual betalains. The work herein aimed to compare effects of four main betalains on inflammatory and cell-protective markers and to highlight potential structure-related relationships of the two main subgroups: betacyanins vs betaxanthins.
Methods And Results: Murine RAW 264.
Antioxidants (Basel)
August 2022
School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK.
The present study aimed to compare the absorption and transport patterns of three main betalains, betanin, vulgaxanthin I and indicaxanthin, into intestinal epithelial cells and to assess their distinct molecular effects on inflammatory and redox-related cell signalling in association with their radial scavenging potencies. All three betalains showed anti-inflammatory effects (5-80 μM), reflected by attenuated transcription of pro-inflammatory mediators such as cyclooxygenase-2 and inducible NO-synthase. Concomitant increases in antioxidant enzymes such as heme oxygenase-1 were only observed for betanin.
View Article and Find Full Text PDFFood Chem
August 2022
School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom. Electronic address:
The present study focused on the development of a new purification protocol suitable for betanin and other major betalains, vulgaxanthin I, indicaxanthin and neobetanin, using flash chromatography which is a convenient and fast method to isolate unstable materials. Following preliminary tests, a gradient procedure using 0-60% acetonitrile, with 0.1% (v/v) formic acid as mobile phase, was selected for the purification.
View Article and Find Full Text PDFFront Pharmacol
September 2021
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
Recently, many studies have highlighted the health effects of betalains beyond their use as food dyes. The present study investigated betalain-rich extracts with different colors and their main bioactive compounds in order to provide first evidence as a new promising strategy for intestinal inflammation management. Prickly pear betalain-rich extracts, obtained by a QuEChERS method, have been characterized by LC-DAD-ESI-MS/MS analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!